Tìm x biết : 1+2+3+4+....+ x = aaa
biết aaa là số tự nhiên có 3 chữ số và các chữ số đó giống nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
S=1 +2+..+n
S=n+(n-1)+..+2+1
=> 2S = n(n+1)
=> S=\(\dfrac{n\left(n+1\right)}{2}\)
=> aaa = \(\dfrac{n\left(n+1\right)}{2}\)
=> 2aaa =n(n+1)
Mặt khác aaa =a . 111= a . 3 . 37
=> n(n+1) =6a . 37
Vế trái là tích 2 số tự nhiên liên tiếp
=> a . 6 =36
=> a=6
(nêu a . 6 =38 loại)
Vậy n=36, aaa=666
ta có:
1+2+3+...+n=aaa
=> n.(n-1)/2=aaa.111
=>n.(n-1)=aaa.222=a.3.2.37
=>n.(n+1)=aaa.6.37
vì n(n+1) là số tự nhiên liên tiếp =>a.6 và 37 là hai số tự nhiên liên tiếp ; a.6 chia hết cho 6
=>a.6=36<=>a=6=>n=36
vậy...(tự kl nhé)
Đặt
S=1 +2+..+n
S=n+(n-1)+..+2+1
=> 2S = n(n+1)
=> S=n(n+1)/2
=> aaa =n(n+1)/2
=> 2aaa =n(n+1)
Mặt khác aaa =a*111= a*3*37
=> n(n+1) =6a*37
Vế trái là tích 2 số tự nhiên liên tiếp
=> a*6 =36
=> a=6
(nêu a*6 =38 loại)
Vậy n=36, aaa=666
1+2+3+...+n=[n.(n+1)]:2
Ta có 1+2+3+...+n=aaa
=>[n.(n+1)]:2=aaa=a.111=a.3.37
=>n.(n+1)=a.3.37.2=(a.3.2).37=6a.37
Nhận thấy n.(n+1) là tích 2 số tự nhiên liên tiếp
=>6a.37 cũng là tích 2 số tự nhiên liên tiếp
Xét:
+)6a=36=>a=6( thỏa mãn)
+)6a=38=>a=19/3( ko thỏa mãn a là số tự nhiên)
Do đó a=6
Thay a=6 vào 6a.37=6.6.37=36.37=1332
Khi đó n.(n+1)=1332=36.37=36.(36+1)
=>n=36
Vậy a=6;n=36
Từ 1 đến n có n số hạng
=> 1 + 2 + .... + n = \(\frac{\left(n+1\right)n}{2}\)
Mà theo bài ra ta có : 1 + 2 + 3 + ... + n = aaa
=> \(\frac{\left(n+1\right)n}{2}\) = aaa
=> n.( n + 1 ) = 2.3.37.a
Vì tích n.( n + 1 ) chia hết cho nguyên tố 37 nên n hoặc n + 1 chia hết cho 37
Vì \(\frac{n\left(n+1\right)}{2}\) có 3 chữ số => n + 1 < 74 => n = 37 hoặc n + 1 = 37
+) với n = 37 thì \(\frac{37.38}{2}\) = 703 ( loại )
+) với n + 1 = 37 thì \(\frac{36.37}{2}\) = 666 ( thỏa mãn )
Vậy n = 36 và a = 6 . Ta có 1 + 2 + 3 + .... + 36 = 666
1 + 2 + 3 +...+ \(x\) = \(\overline{aaa}\)
Đặt 1 + 2 + 3 +...+ \(x\) = B
xét dãy số
1; 2; 3; ...; \(x\)
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Dãy số trên có số số hạng là: (\(x\) - 1): 1 + 1 = \(x\)
Tổng B = ( \(x\) + 1) \(\times\) \(x\) : 2 = \(\overline{aaa}\)
(\(x\) + 1) \(\times\) \(x\) = \(\overline{aaa}\) \(\times\) 2
(\(x\) + 1) \(\times\) \(x\) = 2 \(\times\) 111 \(\times\) a
(\(x\) + 1) \(\times\) \(x\) = 2 \(\times\) 3 \(\times\) 37 \(\times\) a
(\(x\) + 1)\(\times\) \(x\) = 37\(\times\)6\(\times\)a = 74\(\times\)3\(\times\)a = 111 \(\times\) 2 \(\times\) a
⇒ 6 \(\times\) a = 36; 38; 3 \(\times\) a = 73; 75; 2 \(\times\) a = 110; 112
Lập bảng ta có:
6 \(\times\) a | 36 | 38 |
a | 6 | \(\dfrac{19}{3}\)(loại) |
3 \(\times\) a | 73 | 75 |
a | \(\dfrac{73}{3}\) (loại) | \(\dfrac{75}{3}\) (loại) |
2 \(\times\) a | 110 | 112 |
a | 55 (loại) | 56 (loại) |
Vậy a = 6 ⇒ (\(x\) + 1) \(\times\) \(x\) = 37 \(\times\) 36 ⇒ \(x\) = 36
Đáp số \(x\) = 36; a = 6
Ta thấy rằng \(1+2+3+...+x=\dfrac{x\left(x+1\right)}{2}\) nên điều kiện đề bài tương đương với \(\dfrac{x\left(x+1\right)}{2}=\overline{aaa}=100a+10a+a\) \(=111a\)
\(\Leftrightarrow x\left(x+1\right)=222a\). Ta thấy \(x\ge11\) vì nếu không \(x^2+x\le110< 111\). Tương tự thì \(x\le31\) vì nếu không \(x^2+x\ge1056>999\). Từ đó suy ra \(11\le x\le31\). Mặt khác, \(x\left(x+1\right)=222a\) nghĩa là \(x\left(x+1\right)⋮222\). Nhưng do \(x\) và \(x+1\) nguyên tố cùng nhau nên \(x⋮222\) hoặc \(x+1⋮222\). Nhưng với \(11\le x\le31\) thì rõ ràng điều này không thể thỏa mãn.
Vậy, không tồn tại số tự nhiên \(x\) nào thỏa mãn yêu cầu bài toán.
1+2+3+...+n=aaa
=>\(\dfrac{\text{n(n+1)}}{2}\)=aaa
=>n(n+1)=aaa.2=a.111.2=a.3.37.2=6a.37
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên 6a.37 cũng là tích 2 số tự nhiên liên tiếp
+)6a=36=>a=6 (TM)
+)6a=38=>a=19/3 (không TM)
do đó a=6 thỏa mãn
Khi đó n(n+1)=1332=36.37=36.(36+1)
=>n=36
Vậy n=36;a=6
Ta có:
1+2+3+...+x=x(x+1):2
=>x(x+1):2=aaa=a.111
=>x(x+1)=a.111.2=a.37.3.2=(6.a).37
Do x và x+1 là 2 số tự nhiên liên tiếp
=>6.a và 37 là 2 STN liên tiếp
=>6a=36=>a=6(TM) hoặc 6a=38(L vì a không là STN)
=>x(x+1)=36.37
>x=36
36+0=36, duyet nha