K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

* Mình chỉ biết làm a) và b) thôi, cậu thông cảm. Hình tự vẽ nhé *

a) Vì AM vuông góc với AC => CAM = 90 độ

        BM vuông góc với BC => CBM = 90 độ

Xét tam giác CMA và tam giác CMB, ta có:

+) CAM = CBM ( cmt )

+) AC = BC ( tam giác ABC cân tại C )

-> CM chung

=> Tam giác CMA = tam giác CMB ( cạnh huyền - cạnh góc vuông )

b) Vì tam giác CMA = tam giác CMB ( cmt )

=> ACH = BCH

Xét tam giác ACH và tam giác BCH, ta có:

+) AC = BC

+) ACH = BCH

-> CH chung

=> Tam giác ACH = tam giác BCH ( c.g.c )

=> AH = BH

1 tháng 5 2021

thk anyways

29 tháng 5 2016

Câu a chứng minh cái gì?

Câu c: Khi ABC=1200 là sao?

29 tháng 5 2016

câu a chứng minh gìb

26 tháng 1 2018

Xét hai tam giác vuông ABD và ACD, ta có:

                      ˆABD=ˆACD=90∘ABD^=ACD^=90∘

                      AB = AC (chứng minh trên)

                      AD cạnh huyền chung                     

⇒⇒ ∆ABD = ∆ACD (cạnh huyền, cạnh góc vuông)

Suy ra: ˆA1=ˆA2A1^=A2^ (hai góc tương ứng)

Vậy AD là tia phân giác của góc A.

5 tháng 5 2023

a) Xét hai tam giác vuông: \(\Delta DAB;\Delta DMB\) có:

\(DB\) chung

\(\widehat{DBA}=\widehat{DMA}\) (\(BD\) là tia phân giác của \(\widehat{B}\))

\(\Rightarrow\Delta DAB=\Delta DMB\) (cạnh huyền - góc nhọn)

5 tháng 5 2023

b) Do ∆DAB = ∆DMB (cmt)

⇒ DA = DM (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AM (1)

Do ∆DAB = ∆DMB (cmt)

⇒ BA = BM (hai cạnh tương ứng)

⇒ B nằm trên đường trung trực của AM (2)

Từ (1) và (2) ⇒ BD là đường trung trực của AM

Hay BD ⊥ AM

c) Xét hai tam giác vuông:

∆DMC và ∆DAK có:

DM = DA (cmt)

∠MDC = ∠ADK (đối đỉnh)

∆DMC = ∆DAK (cạnh góc vuông - góc nhọn kề)

⇒ MC = AK (hai cạnh tương ứng)

Lại có: BM = BA (cmt)

⇒ BM + MC = BA + AK

⇒ BC = BK

∆BCK cân tại B

Mà BD là tia phân giác của ∠B

⇒ BD cũng là đường cao của ∆BCK

⇒ BD ⊥ KC

Mà BD ⊥ AM (cmt)

⇒ AM // KC

a) Xét ΔBAK vuông tại A và ΔBCK vuông tại C có

BK chung

BA=BC(ΔBAC cân tại B)Do đó: ΔBAK=ΔBCK(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{ABK}=\widehat{CBK}\)(hai góc tương ứng)

mà tia BK nằm giữa hai tia BA,BC

nên BK là tia phân giác của \(\widehat{ABC}\)(đpcm)

b) Ta có: ΔBAK=ΔBCK(cmt)

nên KA=KC(Hai cạnh tương ứng)

Ta có: BA=BC(ΔABC cân tại B)

nên B nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có:KA=KC(cmt)

nên K nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng) (2)

Từ (1) và (2) suy ra BK là đường trung trực của AC

hay BK\(\perp\)AC(đpcm)

Vì BK là đường trung trực của AC(cmt)

nên BK vuông góc với AC tại trung điểm của AC

mà BK cắt AC tại I(gt)

nên BK\(\perp\)AC tại I và I là trung điểm của AC

Ta có: I là trung điểm của AC(cmt)

nên \(CI=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔBIC vuông tại I, ta được:

\(BC^2=BI^2+IC^2\)

\(\Leftrightarrow BI^2=BC^2-IC^2=10^2-3^2=91\)

hay \(BI=\sqrt{91}cm\)

Vậy: \(BI=\sqrt{91}cm\)

27 tháng 3 2020

C A B H M

a) Xét ∆CMA và ∆ CMB có:

AC=BC (∆ABC cân tại C)

\(\widehat{CAM}=\widehat{CBM}=90^o\)

CM chung

=> ∆CMA = ∆CMB (ch-gn)

b) Vì ∆CMA=∆CMB => \(\widehat{ACM}=\widehat{BCM}\)(2 góc tương ứng)

=> CH là phân giác \(\widehat{ACB}\)

∆ACB cân tại C => CH cũng là trung tuyến

=> AH=BH

c) Ta có: \(\widehat{CBA}=\frac{180^o-\widehat{ACB}}{2}=\frac{180^o-120^o}{2}=\frac{60^o}{2}=30^o\)

Mà \(\widehat{CBA}+\widehat{ABM}=90^o\)

=> \(\widehat{AMB}=90^o-\widehat{CBA}=90^o-30^o=60^o\)

∆CMA =∆CMB => AM=MB => ∆AMB cân tại M

=> ∆AMB là ∆ đều

30 tháng 4 2020

a) Xét 2 tam giác vuông CAM và CBM có:

           CM: cạnh chung

           CA = CB ( Vì tam giác ABC cân tại C)

Do đó tam giác CAM=CBM ( cạnh huyền- cạnh góc vuông)

b) Xét tam giác CHA và CHB có:

\(\widehat{ACH}\)=\(\widehat{BCH}\)( Vì \(\Delta CAM=\Delta CBM\))

CA = CB ( Do tam giác ABC cân tại C)

\(\widehat{CAH}=\widehat{CBH}\)( Do tam giác ABC cân tại C )

Do đó tam giác CHA= CHB (g-c-g)

=> HA= HB ( 2 cạnh tương ứng)

c) Ta có tam giác CAM= CBM

=> AM= BM ( 2 cạnh tương ứng )

=> tam giác AMB cân tại M

Tam giác ABC có \(\widehat{ACB}=120^O\)

=> \(\widehat{CAB}=\frac{180^0-120^0}{2}=30^O\)

=> \(\widehat{MAB}=90^0-\widehat{CAB}=90^0-30^0=60^0\)

\(\Delta MAB\)cân tại M có \(\widehat{MAB}=60^0\)

Do đó tam giác MAB là tam giác đều khi \(\widehat{ACB}=120^0\)

 

           

a: Xét ΔDAB vuông tại B và ΔDAC vuông tại C có

DA chung

AB=AC

Do đó:ΔDAB=ΔDAC

b: Ta có: ΔDAB=ΔDAC

nên DB=DC

=>ΔDBC cân tại D

mà \(\widehat{BDC}=60^0\)

nên ΔDBC đều

5 tháng 4 2022

còn các phần khác ko bn