cho tam giác ABC vuông tại A . M là TĐ của AC , từ C vẽ đg vg góc vs AC cắt BM tại D . CM :
a. Cm AB=CD
b. CM góc CDB > góc CBD
c. CM AD+BC < AC+BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)
ADlà phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=15/7
=>BD=45/7cm; CD=60/7cm
b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có
góc HAB=góc ECD
=>ΔABH đồng dạng với ΔCDE
c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:
\(AH\cdot AC=AB^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABK vuông tại A có AH là đường cao ứng với cạnh huyền BK, ta được:
\(BK\cdot BH=AB^2\)(2)
Từ (1) và (2) suy ra \(AH\cdot AC=BK\cdot BH\)
a: Xet ΔAEB và ΔADC có
AE=AD
góc A chung
AB=AC
=>ΔAEB=ΔADC
=>BE=CD
b: Xet ΔKDB và ΔKEC có
góc KDB=góc KEC
DB=EC
góc KBD=góc KCE
=>ΔKBD=ΔKCE
c: Xét ΔABK và ΔACK có
AB=AC
BK=CK
AK chung
=>ΔABK=ΔACK
=>góc BAK=góc CAK
=>AK là phân giác của góc BAC
d: ΔABC cân tại A
mà AI là phân giác
nên AI vuông góc BC
â)xét tam giác AMBvà tam giác AMC
AB=AC( gt)
AM chung
MB=MC ( M là trung điểm của BC )
=> tam giác AMB= tam giác AMC ( c.c.c)
=> góc AMB= góc AMC ( 2 góc tương ứng )
mà góc AMB+ góc AMC = 180O ( 2 GÓC KỀ BÙ )
=> góc AMB= góc AMC=90O
=> AM vuông góc với BC
b) xét tam giác ADF và tam giác ADE
DF=DE ( gt)
góc ADF= góc CDE ( 2 góc đối đỉnh )
AD=CD ( D là trung điểm của AC)
=> tam giác ADF = tam giác ADE ( c.g.c)
=> góc CAF= góc ACÊ ( 2 góc tương ứng ) mà chúng ở vị trí so le trong do AC cắt AF và CE
=.> AF// CE
a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
anh làm câu a và b đi ạ cho em xem em lớp 7 ko biết làm chỉ tham khảo thôi
hình tự vẽ nha
a) xét tam giác abm và tam giác cdm có : góc bma = góc cmd ;ma=mc,góc bam =góc bcm =90 độ
=> 2 tam giác trên = nhau => ab = cd
b) dễ quá tự suy luận
c dễ mà