Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAEB và ΔADC có
AE=AD
góc A chung
AB=AC
=>ΔAEB=ΔADC
=>BE=CD
b: Xet ΔKDB và ΔKEC có
góc KDB=góc KEC
DB=EC
góc KBD=góc KCE
=>ΔKBD=ΔKCE
c: Xét ΔABK và ΔACK có
AB=AC
BK=CK
AK chung
=>ΔABK=ΔACK
=>góc BAK=góc CAK
=>AK là phân giác của góc BAC
d: ΔABC cân tại A
mà AI là phân giác
nên AI vuông góc BC
â)xét tam giác AMBvà tam giác AMC
AB=AC( gt)
AM chung
MB=MC ( M là trung điểm của BC )
=> tam giác AMB= tam giác AMC ( c.c.c)
=> góc AMB= góc AMC ( 2 góc tương ứng )
mà góc AMB+ góc AMC = 180O ( 2 GÓC KỀ BÙ )
=> góc AMB= góc AMC=90O
=> AM vuông góc với BC
b) xét tam giác ADF và tam giác ADE
DF=DE ( gt)
góc ADF= góc CDE ( 2 góc đối đỉnh )
AD=CD ( D là trung điểm của AC)
=> tam giác ADF = tam giác ADE ( c.g.c)
=> góc CAF= góc ACÊ ( 2 góc tương ứng ) mà chúng ở vị trí so le trong do AC cắt AF và CE
=.> AF// CE
A) Xét ΔABD và ΔEBD có:
+) AB=BE (gt)
+) góc ABD= góc EBD (do BD là phân giác góc B)
+) BD chung
=> ΔABD = ΔEBD (c-g-c)
b)
Qua C kẻ đường thẳng vuông góc với BD tại H.
Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B
=> ΔBCF cân tại B (tính chất)
=> BC= BF (điều phải chứng minh)
c)
Xét ΔABC và ΔEBF có:
+) AB = EB (gt)
+) góc B chung
+) BC= BF (câu b)
=> ΔABC = ΔEBF (c-g-c)
d)
Từ ý a, ΔABD = ΔEBD (c-g-c)
=> góc BAD= góc BED = 90
=> DE ⊥ BC
Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D
=> D là trực tâm
=> FD ⊥ BC
=> DE trùng với FD
=> D,E,F thẳng hàng
a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>AD=AE
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
=>ΔAEI=ΔADI
=>góc EAI=góc DAI
=>AI là phân giác của góc BAC
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
d: AB=AC
IB=IC
=>AI là trung trực của BC
=>A,I,M thẳng hàng
hình tự vẽ nha
a) xét tam giác abm và tam giác cdm có : góc bma = góc cmd ;ma=mc,góc bam =góc bcm =90 độ
=> 2 tam giác trên = nhau => ab = cd
b) dễ quá tự suy luận
c dễ mà