K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

$mA=\sqrt{x}-2$

$\Leftrightarrow \frac{m(2\sqrt{x}-1)}{\sqrt{x}+1}=\sqrt{x}-2$
$\Rightarrow m(2\sqrt{x}-1)=(\sqrt{x}+1)(\sqrt{x}-2)$

$\Leftrightarrow 2m\sqrt{x}-m=x-\sqrt{x}-2$
$\Leftrightarrow x-\sqrt{x}(2m+1)+(m-2)=0(*)$
Để pt ban đầu có 2 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt.

Điều này xảy ra khi mà:
\(\left\{\begin{matrix}\ \Delta=(2m+1)^2-4(m-2)>0\\ S=2m+1>0\\ P=m-2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4m^2+9>0\\ m> \frac{-1}{2}\\ m>2\end{matrix}\right.\Leftrightarrow m>2\)

28 tháng 8 2021

hello

ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\4-x>=0\\x+1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2< =x< =4\\x< >-1\end{matrix}\right.\Leftrightarrow x\in\left[2;4\right]\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\dfrac{3x+2\sqrt{x}-5}{x+\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{1-\sqrt{x}}\)

\(=\dfrac{3x+2\sqrt{x}-5+\sqrt{x}-1+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\cdot\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}\)

18 tháng 10 2021

\(a,ĐK:x>0;x\ne1\\ b,A=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ c,x=4\Leftrightarrow\sqrt{x}=2\Leftrightarrow A=\dfrac{2-1}{2}=\dfrac{1}{2}\)

18 tháng 10 2021

tìm điều kiện xác định có thể rõ ràng chút được không ạ, chỗ này mình không hiểu lắm ý

a) Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

 

26 tháng 9 2021

\(a,A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\\ b,A< 0\Leftrightarrow\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\left(1>0\right)\\ \Leftrightarrow x< 1\\ c,A\in Z\Leftrightarrow1⋮\sqrt{x}-1\\ \Leftrightarrow\sqrt{x}-1\inƯ\left(1\right)\left\{-1;1\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\\ \Leftrightarrow x\in\left\{0;4\right\}\)

26 tháng 9 2021

a) \(A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+1-4}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\)

b) \(A=\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)

Kết hợp đk: 

\(\Rightarrow0\le x< 1\)

c) \(A=\dfrac{1}{\sqrt{x}-1}\in Z\)

\(\Rightarrow\sqrt{x}-1\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0;2\right\}\)

\(\Rightarrow x\in\left\{0;4\right\}\)

NV
15 tháng 12 2020

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)