tìm giá trị nhỏ nhất của A =\(9x^2\)+5y^2 -6xy-6x-6y+20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2+5y^2-6xy-6x-6y+20\)
\(=9x^2+y^2+1-6x+2y-6xy+4y^2-8y+4+15\)
\(=\left(3x-y-1\right)^2+4\left(y-1\right)^2+15\ge15\)
Dấu \(=\)khi \(\hept{\begin{cases}3x-y-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=1\end{cases}}\).
A = 9x2 - 6xy + 5y2 + 1 = (3x)2 + 2.3y + y2 + (2y)2 + 1 = ( 3x + y)2 + ( 2y )2 +1
mà ( 3x + y)2 > 0 và ( 2y )2 > 0
=> ( 3x + y )2 + (2y)2 + 1 > 0
Vậy gtnn của A là 1
\(a,A=2x^2+9y^2-6xy-6x-12y+2049\)
\(=x^2-6xy+9y^2+x^2-10x+25+4x-12y+2024\)
\(=\left(x-3y\right)^2+\left(x-5\right)^2+4\left(x-3y\right)+2024\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+2020\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2020\)
\(A_{min}=2020\Leftrightarrow\hept{\begin{cases}\left(x-3y+2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x=5\end{cases}\Rightarrow5-3y+2=0}\)
\(\Rightarrow3y=7\Leftrightarrow y=\frac{7}{3}\)
Vậy \(A_{min}=2020\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)
b tương tự nhé
\(C=1-6y-5y^2-12xy-9x^2\)
\(\Rightarrow C=-4y^2-12xy-9x^2-y^2-6y+1\)
\(\Rightarrow C=-\left(4y^2+12xy+9x^2\right)-\left(y^2+6y+9\right)+1+9\)
\(\Rightarrow C=-\left(2y-3x\right)^2-\left(y+3\right)^2+10\)
mà \(\left\{{}\begin{matrix}-\left(2y-3x\right)^2\le0,\forall x;y\\-\left(y+3\right)^2\le0,\forall y\end{matrix}\right.\)
\(\Rightarrow C=-\left(2y-3x\right)^2-\left(y+3\right)^2+10\le10\)
\(\Rightarrow GTLN\left(C\right)=10\left(tạix=-2;y=-3\right)\)
Lời giải:
$A=(9x^2-6xy+y^2)+5y^2-6x-6y+20$
$=(3x-y)^2-2(3x-y)+4y^2-8y+20$
$=(3x-y)^2-2(3x-y)+1+(4y^2-8y+4)+15$
$=(3x-y-1)^2+(2y-2)^2+15\geq 15$
Vậy $A_{\min}=15$.
Giá trị này đạt tại $3x-y-1=2y-2=0$
$\Leftrightarrow (x,y)=(\frac{2}{3},1)$