Cho đường tròn O nằm ngoài đường tròn O từ S kẻ hai tiếp tuyến Sa và SB với đường tròn O A,B là các tiếp điểm Gọi D là giao điểm của AO với SB, E là giao điểm của AB với SO. Vẽ AD cắt đường tròn O tại C. Kẻ BH vuông góc AC a. Chứng minh tứ giác SAOB nội tiếp. b. Chứng ming BC song song SO và BC là phân giác của góc HBD. c. Gọi F là giao điểm của SC và BH. Chứng minh F là trung điểm của BH ( giải giúp mình câu c thoi ạ! Cảm mơn ạ!)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh tứ giác $EFOH$ là tứ giác nội tiếp, ta cần chứng minh $\angle EHF = \angle EOF$.
Ta có $\angle EHA = \angle HAB$ (do $SA$ và $SB$ là hai tiếp tuyến của đường tròn $O$), suy ra $\angle AHB = 90^\circ$.
Do đó, $\angle EHF = \angle EHA + \angle AHF = \angle HAB + \angle AOF = \angle EOF$ (do $OA$ và $OB$ là đường kính của đường tròn $O$).
Vậy, tứ giác $EFOH$ là tứ giác nội tiếp.
Để chứng minh $AM \cdot AB = AF \cdot AE$, ta sử dụng định lí Euclid về tích của các đoạn thẳng từ một điểm đến đường thẳng cắt nó.
Áp dụng định lí này cho đường thẳng $AH$ và đường tròn $O$, ta có:
$AM \cdot AB = AH^2 - OH^2$
$AF \cdot AE = AH^2 - HE \cdot HF$
Vì tứ giác $EFOH$ là tứ giác nội tiếp, nên $HE \cdot HF = OE \cdot OF$.
Do đó, $AM \cdot AB = AH^2 - OH^2 = AH^2 - OE \cdot OF = AF \cdot AE$.
Vậy, ta đã chứng minh được $AM \cdot AB = AF \cdot AE$.
a: Xét ΔOSB có OS=OB=BS(=R)
nên ΔOSB đều
=>\(\widehat{SBO}=60^0\)
Xét (O) có
MS,MQ là các tiếp tuyến
Do đó: MS=MQ
=>M nằm trên đường trung trực của SQ(1)
ta có: OS=OQ
=>O nằm trên đường trung trực của SQ(2)
Từ (1) và (2) suy ra MO là đường trung trực của SQ
=>MO\(\perp\)SQ tại H và H là trung điểm của SQ
Ta có: ΔSOB đều
mà SH là đường cao
nên H là trung điểm của OB
Xét tứ giác OSBQ có
H là trung điểm chung của OB và SQ
=>OSBQ là hình bình hành
Hình bình hành OSBQ có OS=OQ
nên OSBQ là hình thoi
=>\(\widehat{SBQ}+\widehat{OSB}=180^0\)
=>\(\widehat{SBQ}=120^0\)
Xét ΔBSQ có \(cosSBQ=\dfrac{BS^2+BQ^2-SQ^2}{2\cdot BQ\cdot BS}\)
=>\(\dfrac{R^2+R^2-SQ^2}{2\cdot R\cdot R}=cos120=-\dfrac{1}{2}\)
=>\(2R^2-SQ^2=-R^2\)
=>\(SQ^2=3R^2\)
=>\(SQ=R\sqrt{3}\)
a: Xét tứ giác OASB có
\(\widehat{OAS}+\widehat{OBS}=180^0\)
Do đó: OASB là tứ giác nội tiếp
a: Xét ΔABE và ΔADB co
góc ABE=góc ADB
góc BAE chung
=>ΔABE đồng dạng với ΔADB
=>AB/AD=AE/AB
=>AB^2=AD*AE
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
=>AH*AO=AB^2=AE*AD
=>AH/AD=AE/AO
=>ΔAHE đồng dạng với ΔADO
=>góc AHE=góc ADO
=>góc OHE+góc ODE=180 độ
=>OHED nội tiếp
b: OHED nội tiếp
=>góc HED+góc HOD=180 độ
BD//AO
=>góc BDO+góc HOD=180 độ
=>góc BDO=góc HED
góc BCD+góc BDC=90 độ
góc BCD=góc BED
=>góc HED+góc BED=90 độ
=>HE vuông góc BF tại E