K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2023

Để chứng minh tứ giác $EFOH$ là tứ giác nội tiếp, ta cần chứng minh $\angle EHF = \angle EOF$.

Ta có $\angle EHA = \angle HAB$ (do $SA$ và $SB$ là hai tiếp tuyến của đường tròn $O$), suy ra $\angle AHB = 90^\circ$.

Do đó, $\angle EHF = \angle EHA + \angle AHF = \angle HAB + \angle AOF = \angle EOF$ (do $OA$ và $OB$ là đường kính của đường tròn $O$).

Vậy, tứ giác $EFOH$ là tứ giác nội tiếp.

Để chứng minh $AM \cdot AB = AF \cdot AE$, ta sử dụng định lí Euclid về tích của các đoạn thẳng từ một điểm đến đường thẳng cắt nó.

Áp dụng định lí này cho đường thẳng $AH$ và đường tròn $O$, ta có:

$AM \cdot AB = AH^2 - OH^2$

$AF \cdot AE = AH^2 - HE \cdot HF$

Vì tứ giác $EFOH$ là tứ giác nội tiếp, nên $HE \cdot HF = OE \cdot OF$.

Do đó, $AM \cdot AB = AH^2 - OH^2 = AH^2 - OE \cdot OF = AF \cdot AE$.

Vậy, ta đã chứng minh được $AM \cdot AB = AF \cdot AE$.

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
24 tháng 12 2023

a: Xét ΔOSB có OS=OB=BS(=R)

nên ΔOSB đều

=>\(\widehat{SBO}=60^0\)

Xét (O) có

MS,MQ là các tiếp tuyến

Do đó: MS=MQ
=>M nằm trên đường trung trực của SQ(1)

ta có: OS=OQ

=>O nằm trên đường trung trực của SQ(2)

Từ (1) và (2) suy ra MO là đường trung trực của SQ

=>MO\(\perp\)SQ tại H và H là trung điểm của SQ

Ta có: ΔSOB đều

mà SH là đường cao

nên H là trung điểm của OB

Xét tứ giác OSBQ có

H là trung điểm chung của OB và SQ

=>OSBQ là hình bình hành

Hình bình hành OSBQ có OS=OQ

nên OSBQ là hình thoi

=>\(\widehat{SBQ}+\widehat{OSB}=180^0\)

=>\(\widehat{SBQ}=120^0\)

Xét ΔBSQ có \(cosSBQ=\dfrac{BS^2+BQ^2-SQ^2}{2\cdot BQ\cdot BS}\)

=>\(\dfrac{R^2+R^2-SQ^2}{2\cdot R\cdot R}=cos120=-\dfrac{1}{2}\)

=>\(2R^2-SQ^2=-R^2\)

=>\(SQ^2=3R^2\)

=>\(SQ=R\sqrt{3}\)

13 tháng 12 2021

a: Xét tứ giác OASB có

\(\widehat{OAS}+\widehat{OBS}=180^0\)

Do đó: OASB là tứ giác nội tiếp

a: Xét ΔABE và ΔADB co

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB/AD=AE/AB

=>AB^2=AD*AE

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2=AE*AD

=>AH/AD=AE/AO

=>ΔAHE đồng dạng với ΔADO

=>góc AHE=góc ADO

=>góc OHE+góc ODE=180 độ

=>OHED nội tiếp

b: OHED nội tiếp

=>góc HED+góc HOD=180 độ

BD//AO

=>góc BDO+góc HOD=180 độ

=>góc BDO=góc HED

góc BCD+góc BDC=90 độ

góc BCD=góc BED
=>góc HED+góc BED=90 độ

=>HE vuông góc BF tại E