K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

a,Ta có: tam giác ABC cân tại A
           =>AB=AC
  Xét tam giác AHB và tam giác AHC có:
         góc AHB=góc AHC=90 độ
        AB=AC(cmt)
        AH chung
=>tam giác AHB=tam giác AHC(cạnh huyền-cạnh góc vuông)
=>góc BAH=góc CAH(2 góc tương ứng)
=>AH là tia phân giác của góc BAC
 (bít lm mỗi câu a, thông cảm)

2 tháng 4 2022

đây ko phải là toán lớp 6 .-.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

DO đó; ΔAMH=ΔANH

Suy ra: AM=AN và HM=HN

=>AH là đường trung trực của MN

hay AH\(\perp\)MN

4 tháng 5

c, Xét ▲AMK và ▲ANK có:                

Góc K1 = K2 ( Ah vuông với Mn)

Ak chung

A1=A2 (cmt)

Sra ▲AMK = ▲ANK ( cgv-gn)

Do đó MK = NK ( 2 cạnh tương ứng)

Xét ▲NMP có: 

NH là trung tuyến (do HM=HP)

PK là trung tuyến ( do MK = NK) cmt (1)

Suy ra Q là trọng tâm △NMP (2)

Từ (1) và (2) suy ra P,Q,K thẳng hàng

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>AM=AN và MH=MN

=>AH là trung trực của MN

22 tháng 2 2020

A B C H M N

a) Vì AB = AC =10cm => (đpcm)

b) Xét \(\Delta AHB\)và \(\Delta AHC\)có;

AB = AC(gt)

\(\widehat{AHB}=\widehat{AHC}=90^o\)   

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(c.g.c\right)\)

\(\Rightarrow HB=HC\)(2 cạnh tương ứng)(1)

\(\Rightarrow\widehat{B}=\widehat{C}\)(2 góc tương ứng)(2)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\Rightarrow\)AH là tia phân giác của \(\widehat{A}\)

c) HM với HN?

Vì \(\Delta HMB;\Delta HNC\)là tam giác vuông nên từ  (1);(2) =>\(\Delta HMB=\Delta HNC\)

e)Xét \(\Delta AHC\)vuông: 

Áp dụng định lí Py ta go ta có:

   \(AC^2=CH^2+AH^2\)

\(12^2=6^2+AH^2\)

\(\Rightarrow AH^2=12^2-6^2=144-36=108\)

\(\Rightarrow AH=\sqrt{108}cm\)

23 tháng 2 2020

Thông cảm nhé tối qua mình tắt mất nên nay làm tiếp:D

A B C M N O x y H

Vì \(\widehat{ABO}=\widehat{ACO}=90^o\)mà \(\widehat{ABC}=\widehat{ACB}=60^o\Rightarrow\widehat{BCO}=\widehat{CBO}=30^o\)

Do \(\widehat{BCO}=\widehat{CBO}=30^o\)nên \(\Delta OBC\)là tam giác cân

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN và HM=HN

=>AH là đường trung trực của MN

18 tháng 4

Bài 5:

a) Chứng minh ∆AHB = ∆AHC và AH là tia phân giác của góc BAC.

Vì ∆ABC cân tại A nên:

  • AB = AC (1)
  • Góc ABC = góc ACB (2)

Xét ∆AHB và ∆AHC có:

  • Cạnh AH chung
  • AB = AC (từ (1))
  • Góc AHB = góc AHC (từ (2) và AH ⊥ BC)

Vậy ∆AHB = ∆AHC (c.g.c)

Suy ra:

  • HB = HC
  • Góc BAH = góc CAH

Do đó, AH là tia phân giác của góc BAC.

b) Chứng minh AH vuông góc với MN

Xét ∆AHM và ∆AHN có:

  • AH chung
  • Góc AHM = góc AHN (= 90 độ)
  • AM = AN (vì AH là tia phân giác của góc BAC)

Vậy ∆AHM = ∆AHN (cạnh huyền - góc nhọn)

Suy ra: HM = HN

Do đó, AH là đường trung trực của MN.

Vậy AH vuông góc với MN.

c) Chứng minh P, Q, K thẳng hàng

Vì H là trung điểm của MP nên HP = HM.

Xét ∆HMP và ∆HNP có:

  • HP = HN (cmt)
  • MH = NH (cmt)
  • NP chung

Vậy ∆HMP = ∆HNP (c.c.c)

Suy ra: góc MHP = góc NHP = 90 độ.

Do đó, PQ ⊥ MH và PQ ⊥ NH.

Mà AH ⊥ MN nên PQ // AH (1)

Ta lại có: K ∈ MN và AH ⊥ MN nên K ∈ PQ (2)

Từ (1) và (2) suy ra: PQ đi qua điểm K.

Vậy P, Q, K thẳng hàng.

12 tháng 4 2020

a) Có AB=AC=10cm

=> \(\Delta\)ABC cân tại A

b) Có: \(\hept{\begin{cases}\widehat{AHB}=\widehat{AHC}=90^o\\\widehat{ABH}=\widehat{ACH}\end{cases}}\)

=> \(\widehat{BAH}=\widehat{CAH}\)=> AH là phân giác \(\widehat{BAC}\)

Ta có: AB=AC (gt)

AH chung

\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

=> \(\Delta BAH=\Delta CAH\)

c) Có: \(\hept{\begin{cases}\widehat{MBH}=\widehat{NCH}\\\widehat{BMH}=\widehat{HNC}=90^o\\BH=CH\left(\Delta AHB=\Delta ACH\right)\end{cases}\Rightarrow\Delta BHM=\Delta CHN}\)

d) \(BH=\frac{1}{2}BC=\frac{12}{2}=6\left(cm\right)\)

\(AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

e) Ta có: \(\hept{\begin{cases}\widehat{OBC}=90^o-\widehat{ABC}\\\widehat{OCB}=90^o-\widehat{ACB}\end{cases}}\)

mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{OBC}=\widehat{OCB}\)

\(\Rightarrow\Delta\)OBC cân tại O

a: Ta có: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

c: Ta có: ΔAHB=ΔAHC

=>BH=CH

Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

d: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>ΔOBC cân tại O

a: Xét ΔAHC vuông tại H và ΔAHB vuông tại H có

AB=AC

AH chung

Do đó: ΔAHC=ΔAHB

Suy ra: \(\widehat{AHC}=\widehat{AHB}\)

b: Xét tứ giác BNCM có 

H là trung điểm của BC

H là trung điểm của NM

Do đó: BNCM là hình bình hành

Suy ra: BN//CM

hay BN//AC