Cho hình chóp đều tứ giác đều S ABCD . có tất cả các cạnh bằng a . Gọi O là giao điểm AC và BD
a) Chứng minh SA vuông góc với SC.
b) Tính góc giữa mặt bên và mặt đáy.
c) Tính khoảng cách từ A đến mặt phẳng (SCD)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo giả thiết, S.ABCD là hình chóp đều và đáy ABCD là hình vuông nên SO ⊥ (ABCD) ( tính chất hình chóp đều)
Đáy ABCD là hình vuông cạnh a nên
=> Góc giữa hai mặt phẳng (MBD) và (ABCD) là 45 o
a: AC vuông góc BD
AC vuông góc SO
=>AC vuông góc (SBD)
=>SB vuông góc AC
mà AC vuông góc BD
nên AC vuông góc (SBD)
BD vuông góc AC
BD vuông góc SO
=>BD vuông góc (SAC)
=>BD vuông góc SA
b: Xét ΔACB có CO/CA=CI/CB
nên OI//AB
=>OI vuông góc BC
BC vuông góc OI
BC vuông góc SO
=>BC vuông góc (SOI)
=>(SBC) vuông góc (SOI)
a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)
=> Tam giác ABD cân tại A. Lại có góc A= 60o
=> Tam giác ABD đều.
Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.
* Gọi H là tâm của tam giác ABD
=>SH ⊥ (ABD)
*Gọi O là giao điểm của AC và BD.
a.
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(SA=SC=a\Rightarrow SA^2+SC^2=AC^2\)
\(\Rightarrow\Delta SAC\) vuông tại S (Pitago đảo)
\(\Rightarrow SA\perp SC\)
b.
Gọi E là trung điểm CD \(\Rightarrow OE\perp CD\)
Chóp tứ giác đều \(\Rightarrow SO\perp\left(ABCD\right)\Rightarrow SO\perp CD\)
\(\Rightarrow CD\perp\left(SOE\right)\)
Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\Rightarrow\widehat{SEO}\) là góc giữa mặt bên và đáy
\(OE=\dfrac{1}{2}BC=\dfrac{a}{2}\) (đường trung bình) ; \(SO=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\) (trung tuyến ứng với cạnh huyền)
\(\Rightarrow tan\widehat{SEO}=\dfrac{SO}{OE}=\sqrt{2}\Rightarrow\widehat{SEO}=...\)
c.
Từ O kẻ \(OF\perp SE\Rightarrow OF\perp\left(SCD\right)\)
\(\Rightarrow OF=d\left(O;\left(SCD\right)\right)\)
Hệ thức lượng trong tam giác vuông SOE:
\(\dfrac{1}{OF^2}=\dfrac{1}{SO^2}+\dfrac{1}{OE^2}\Rightarrow OF=\dfrac{SO.OE}{\sqrt{SO^2+OE^2}}=\dfrac{a\sqrt{6}}{6}\)
\(\left\{{}\begin{matrix}AO\cap\left(SCD\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)=2OF=\dfrac{a\sqrt{6}}{3}\)