một người đi từ a đến b với vận tốc 50 kmh lúc về người đó đi nhanh hơn lúc đi 10km/h nên thời gian lúc về ít hơn thời gian lúc đi 24 phút tính ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 24 phút = \(\dfrac{2}{5}giờ\)
Gọi x là quãng đường AB (x>0)
Ta có: thời gian đi là: \(\dfrac{x}{50}\)(km/h)
thời gian về là: \(\dfrac{x}{50+10}=\dfrac{x}{60}\)(km/h)
Ta có: thời gian đi - \(\dfrac{2}{5}=thời\) gian về
\(\dfrac{x}{50}-\dfrac{2}{5}=\dfrac{x}{60}\\ < =>\dfrac{6x}{300}-\dfrac{120}{300}=\dfrac{5x}{300}\\ < =>6x-120=5x\\ < =>6x-5x=120\\ < =>x=120\left(km\right)\)
Vậy quãng đường AB dài 120km
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian người đó đi từ A đến B là:
\(\dfrac{x}{50}\left(h\right)\)
Thời gian người đó đi từ B về A là:
\(\dfrac{x}{50+10}=\dfrac{x}{60}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{50}-\dfrac{x}{60}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{6x}{300}-\dfrac{5x}{300}=\dfrac{120}{300}\)
Suy ra: 6x-5x=120
hay x=120(thỏa ĐK)
Vậy: AB=120km
Gọi độ dài quãng đường AB là x
Theo đề, ta có phương trình:
\(\dfrac{x}{50}-\dfrac{x}{60}=\dfrac{2}{5}\)
\(\Leftrightarrow x=120\)
Gọi độ dài quãng đường AB là x(km)(Điều kiện: x>0)
Vận tốc lúc về là: 10+2=12(km/h)
Thời gian đi từ A đến B là: \(\dfrac{x}{10}\left(h\right)\)
Thời gian đi từ B về A là: \(\dfrac{x}{12}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{10}-\dfrac{x}{12}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{6x}{60}-\dfrac{5x}{60}=\dfrac{45}{60}\)
Suy ra: x=45(thỏa ĐK)
Vậy: AB=45km
Gọi quãng đường AB là x ( x> 0 )
Theo bài ra ta có pt \(\frac{x}{25}-\frac{x}{30}=\frac{1}{3}\Rightarrow x=50\left(tm\right)\)
Gọi x là quãng đường AB(x>0, km)
Ta có vận tốc lúc về là: 40+5=45(km/h)
Đổi 15'=1/4 h
Vì lúc về ít hơn lúc đi là 1/4 h, ta có pt:
\(\dfrac{x}{14}-\dfrac{1}{4}=\dfrac{x}{45}\)
\(\dfrac{9x}{360}-\dfrac{90}{360}=\dfrac{8x}{360}\)
\(9x-8x=90\)
\(x=90\)
Vậy: Độ dài quãng đường AB là 90km
Theo đề, ta có:
\(\dfrac{x}{3.2}-\dfrac{x}{4}=2\)
hay x=32
Vậy: Vận tốc lúc đi là 8km/h
Vận tốc lúc về là 10km/h
30 phút=\(\dfrac{1}{2}\)giờ
Gọi thời gian lúc đi là x(giờ; x>0)
Vì thời gian lúc đi ít hơn thời gian lúc về là 30 phút(\(\dfrac{1}{2}\)giờ)
=>Thời gian lúc về là:x+\(\dfrac{1}{2}\)(giờ)
Vận tốc của người đó lúc về nhỏ hơn vận tốc lúc đi là 6km/h
=>Vận tốc của người đó lúc về là:30-6=24(km/h)
Quãng đường lúc đi: 30x(km)
Quãng đường lúc về là: 24(x+\(\dfrac{1}{2}\))
Quãng đường đi được là không đổi nên ta có phương trình:
30x=24(x+\(\dfrac{1}{2}\))
\(\Leftrightarrow\)30x=24x+12
\(\Leftrightarrow\)30x-24x=12
\(\Leftrightarrow\)6x=12
\(\Leftrightarrow\)x=2(TMĐK)
Vậy quãng đường AB dài: 30.2=60km
Gọi độ dài quãng đường AB là x(km)(Điều kiện: x>0)
Thời gian người đó đi từ A đến B là: \(\dfrac{x}{45}\left(h\right)\)
Thời gian người đó đi từ B về A là: \(\dfrac{x}{50}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{45}-\dfrac{x}{50}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{10x}{450}-\dfrac{9x}{450}=\dfrac{180}{450}\)
\(\Leftrightarrow x=180\left(nhận\right)\)
Vậy: Độ dài quãng đường AB là 180km
Gọi Quãng đường AB là x ( x > 0, km )
Quãng đường khi về là x + 10 km
Thời gian người đó đi quãng đường AB là \(\frac{x}{25}\)giờ
Thời gian người đó đi quãng đường khi về là \(\frac{x+10}{30}\)giờ
Do thời gian về ít hơn thời gian đi là 20 phút = 1/3 giờ
nên ta có phương trình \(\frac{x}{25}-\frac{x+10}{30}=\frac{1}{3}\Leftrightarrow x=100\)
Vậy Quãng đường AB là 100 km
Gọi độ dài AB là x
Thời gian đi là x/50
Thời gian về là x/60
Theo đề, ta có: x/50-x/60=2/5
=>x/300=2/5
=>x=120
Gọi x là quãng đường AB (x > 0, x \(\in\) Z)
Thời gian người đi từ A \(\rightarrow\) B : \(\dfrac{x}{50}h\)
Thời gian người đi từ B \(\rightarrow\) A: \(\dfrac{x}{10}h\)
Vì thời gian lúc về ít hơn thời gian lúc đi là 24 phút = \(\dfrac{2}{5}h\)
Ta có pt:
\(\dfrac{x}{50}-\dfrac{x}{60}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{300}x=\dfrac{2}{5}\)
\(\Leftrightarrow x=120\)
Vậy quãng đường AB dài 120 km