B=1/1.2.3+1/2.3.4+...+1/8.9.10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+..+\frac{1}{7.8.9}+\frac{1}{8.9.10}\)
\(B=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(B=2\times\left(1-\frac{1}{10}\right)\)
\(B=2\times\frac{9}{10}\)
\(B=\frac{9}{5}\)
\(B=2\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+..+\frac{1}{9\times10}\right)\)
\(B=2\times\left(\frac{1}{1\times2}-\frac{1}{9\times10}\right)\)
\(B=2\times\frac{22}{45}\)
\(B=\frac{44}{45}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}...+\frac{2}{8.9.10}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)=\frac{11}{45}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)\)
\(=\frac{1}{2}.\frac{22}{45}\)
\(=\frac{11}{45}\)
gọi A=................................
=>2A=2/1.2.3+2/2.3.4+.....+2/8.9.10
2A=1/1.2-1/2.3+1/2.3-...+1/8.9-1/9.10
2A=1/1.2-1/9.10=22/45 =>A=11/45
Câu hỏi của Kudo Shinichi - Toán lớp 6 - Học toán với OnlineMath
Tham khảo tại link trên chỉ cần nhấn vào .
Chúc bạn học tốt
- Gọi \(Z=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\)
\(2Z=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\)
\(2Z=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
\(2Z=\frac{1}{1.2}-\frac{1}{9.10}\)
\(2Z=\frac{22}{45}\)
\(\Rightarrow\frac{22}{45}.x=\frac{22}{45}\)
\(x=\frac{22}{45}:\frac{22}{45}\)
\(x=1\)
Lời giải:
Gọi tổng trong ngoặc là $A$
$2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{10-8}{8.9.10}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}$
$=\frac{1}{1.2}-\frac{1}{9.10}=\frac{1}{2}-\frac{1}{90}=\frac{22}{45}$
Vậy $\frac{22}{45}x=\frac{23}{45}$
$\Rightarrow x=\frac{23}{45}: \frac{22}{45}=\frac{23}{22}$
$x$ ở cuối là sao đây bạn? Nhân riêng với $\frac{1}{8.9.10}$ à?
Lời giải:
Đặt $A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}$
$2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{8.9.10}$
$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{10-8}{8.9.10}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}$
$=\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}$
$A=\frac{11}{45}$
$Ax=\frac{11}{45}x=\frac{22}{45}$
$x=\frac{22}{45}: \frac{11}{45}=2$
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+...+\dfrac{1}{8.9.10}\)
\(B=2.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(B=2.\left(1-\dfrac{1}{10}\right)\)
\(B=2.\dfrac{9}{10}\)
\(B=\dfrac{9}{5}\)
anh ơi , đại học rồi mà ko giải đc bài này ạ?