1.
Cho ta giác abc vuông tại A, AB=15cm, đường cao AH, BH=9cm
a) tính AC, BC và AH
b) Gọi m là trung điểm của BC. Tính đt tam giác AHM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB và ΔCAB có
Góc B chung
Góc AHB= Góc A=90o
=> ΔAHB ∼ ΔCAB (gg)
b) Xét ΔABC có Góc A=90o
=> AB2 + AC2=BC2
=>152+202=BC2
=> BC=25 cm
ta lại có SΔABC =\(\dfrac{AB.AC}{2}=\dfrac{BC.AH}{2}\)
=>\(AB.AC=BC.AH=>15.20=25.AH\)=>AH=12cm
c) M là trung điểm của BC=> BM=\(\dfrac{1}{2}BC=\dfrac{1}{2}.25=12,5\) cm
Xét ΔABH có góc BHA=90o
=> HB2+AH2=AB2
=> BH2+122=152=> BH=9cm
ta có AH⊥BC => AH⊥BM ( M∈BC)
SΔAHM=SΔABM-SΔABH
=> SΔAHM=\(\dfrac{12.12,5}{2}-\dfrac{12.9}{2}=21cm^2\)
a) Xét ΔAHB và ΔCAB có
Góc B chung
Góc AHB= Góc A=90o
=> ΔAHB ∼ ΔCAB (gg)
\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)
\(a,AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\left(pytago\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{144}{13}\left(cm\right)\\AH=\sqrt{\dfrac{25}{13}\cdot\dfrac{144}{13}}=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13}\approx\sin67^0\Leftrightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}=23^0\)
\(c,\) Vì AM là trung tuyến ứng ch BC nên \(AM=BM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\)
Ta có \(MH=MB-HB=6,5-\dfrac{25}{13}=\dfrac{119}{26}\left(cm\right)\)
Vậy \(S_{AMH}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot25=15\cdot20\)
\(\Leftrightarrow AH\cdot25=300\)
hay AH=12(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay HC=16(cm)
Vậy: BC=20cm; AH=12cm; HC=16cm
Sao ý A nhiều ng bảo ko làm đc nhỉ???
Ta chỉ cần dùng tính chất bắc cầu là ra mà
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC\Rightarrow BC=\frac{AB^2}{BH}=\frac{15^2}{9}=25$ (cm)
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{25^2-15^2}=20$ (cm)
$AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12$ (cm)
b.
$BM=BC:2=25:2=12,5$ (cm)
$HM=BM-BH=12,5-9=3,5$ (cm)
$S_{AHM}=\frac{AH.HM}{2}=\frac{12.3,5}{2}=21$ (cm2)
Hình vẽ: