K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

a) Xét ΔAHB và ΔCAB có

Góc B chung

Góc AHB= Góc A=90o

=>  ΔAHB ∼ ΔCAB (gg)

b) Xét ΔABC có Góc A=90o

=> AB2 + AC2=BC2

=>152+202=BC2

=> BC=25 cm

ta lại có SΔABC =\(\dfrac{AB.AC}{2}=\dfrac{BC.AH}{2}\)

=>\(AB.AC=BC.AH=>15.20=25.AH\)=>AH=12cm

c) M là trung điểm của BC=> BM=\(\dfrac{1}{2}BC=\dfrac{1}{2}.25=12,5\) cm

Xét ΔABH có góc BHA=90o

=> HB2+AH2=AB2

=> BH2+122=152=> BH=9cm

ta có AH⊥BC => AH⊥BM ( M∈BC)

SΔAHM=SΔABM-SΔABH

=> SΔAHM=\(\dfrac{12.12,5}{2}-\dfrac{12.9}{2}=21cm^2\)

13 tháng 6 2021

a) Xét ΔAHB và ΔCAB có

Góc B chung

Góc AHB= Góc A=90o

=>  ΔAHB ∼ ΔCAB (gg)

 

 

13 tháng 6 2021

B, C đâu bạn

12 tháng 4 2021

hình bạn tự vẽ 

a) Xét ΔHBA và ΔABC có :

^H = ^A = 900

^B chung

=> ΔHBA ~ ΔABC (g.g)

b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :

AB2 = BH2 + AH2

=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm

Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC

=> BC = AB2/HB = 152/9 = 25cm

Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm

=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2

c) mình chưa nghĩ ra :v 

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA∼ΔABC(g-g)

a: Xet ΔAHB vuông tại H và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

Xét ΔCHA vuông tại H và ΔCAB vuông tại A có

góc C chung

=>ΔCHA đồng dạng với ΔCAB

b: Xét ΔABC vuông tại A có AH là đường cao

nênAH^2=HB*HC

12 tháng 5 2021

a) Xét tam giác AHB và tam giác BCD ta có:

AHB = BCD (=90^0)

ABH = BDC (AB // CD và 2 góc slt)

=> Tam giác AHB đồng dạng với tam giác BCD (G-G)

b) Tam giác BCD vuonng tại C. Áp dụng Pitago ta tính được BD = 15cm

Tam giác AHB đồng dạng với tam giác BCD (G-G)

\(\Rightarrow\dfrac{AH}{BC}=\dfrac{AB}{BD}\Rightarrow\dfrac{AH}{9}=\dfrac{12}{15}\)

=> AH = 7,2 cm

c) Tam giác AHB vuông tại H. Áp dụng Pitago ta tính được  HB = 9,6cm

\(S_{AHB}=\dfrac{1}{2}AH.HB=\dfrac{1}{2}.7,2.9,6=34,56\left(cm^2\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: BC=căn 3^2+4^2=5cm

AH=3*4/5=2,4cm

c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

=>S AHB/S CHA=(AB/CA)^2=9/16

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE