so sánh
A=\(\frac{3}{83}+\frac{7}{84}\)
B=\(\frac{7}{83}+\frac{3}{84}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(A-B=\frac{7-3}{84}-\frac{7-3}{83}=\frac{4}{84}-\frac{4}{83}<0\\ \Rightarrow A< B\)
b.
\(A-1=\frac{13}{10^7-8}\\ B-1=\frac{13}{10^8-7}\)
Hiển nhiên $10^7-8< 10^8-7$
$\Rightarrow \frac{13}{10^7-8}> \frac{13}{10^8-7}$
$\Rightarrow A-1> B-1\Rightarrow A> B$
Ta có
\(\frac{84}{-83}+1=-\frac{1}{83}=-\frac{6}{498}\)
\(-\frac{337}{331}+1=-\frac{6}{331}\)
Vì \(-\frac{6}{498}>-\frac{6}{331}\)
=> \(-\frac{84}{83}>-\frac{337}{331}\)
Ta có: \(\frac{77}{76}=\frac{76+1}{76}=\frac{76}{76}+\frac{1}{76}=1+\frac{1}{76}\)
\(\frac{84}{83}=\frac{83+1}{83}=\frac{83}{83}+\frac{1}{83}=1+\frac{1}{83}\)
Vì \(\frac{1}{83}< \frac{1}{76}\Rightarrow1+\frac{1}{83}< 1+\frac{1}{76}\Rightarrow\frac{84}{83}< \frac{77}{76}\)
\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+14}{83}+\frac{x+116}{4}=0\)
\(\frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+14}{83}+1+\frac{x+116}{4}-4=0\)
\(\frac{x+14+86}{86}+\frac{x+15+85}{85}+\frac{x+16+84}{84}+\frac{x+14+83}{83}+\frac{x+116-16}{4}=0\)
\(\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\left(x+100\right)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
Vì \(\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)
\(\Rightarrow x+100=0\)
\(\Rightarrow x=-100\)
Vậy........
a) (x-1)x(x+1)(x+2) = 24
<=> [(x-1)(x+2)][x(x+1) = 24
<=> (x^2+x-2)(x^2+x) = 24 (1)
Đặt t=x^2+x-1 = (x+1/2)^2 - 5/4 (*)
(1) trở thành (t-1)(t+1) = 24
<=> t^2 - 1 - 24 = 0
<=> t^2 - 25 = 0
<=> t^2 = 25
<=> t=5 hoặc t=-5
Mà t >= -5/4 ( từ *) => t = (x+1/2)^2-5/4 = 5
<=> (x+1/2)^2 = 25/4
Đến đây dễ r`
c) x^4 + 3x^3 + 4x^2 + 3x + 1 = 0
<=> x^4 + x^3 + 2x^3 + 2x^2 + 2x^2 + 2x + x + 1 = 0
<=> (x+1)(x^3 + 2x^2 + 2x + 1) = 0
<=> (x +1)(x^3 + x^2 + x^2 + x + x + 1) = 0
<=> (x+1)^2.(x^2+x+1) = 0
Mà x^2+x+1 = (x+1/2)^2 + 3/4 > 0
Nên x+1=0 <=> x=-1
Vậy ...
c)Ta có: \(x^4+3x^3+4x^2+3x+1=0\)
\(\Leftrightarrow x\left(x^3+2x^2+2x+1\right)+1\left(x^3+2x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+2x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)
Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\) nên vô nghiệm
Suy ra x + 1 =0 hay x = -1
\(A=\frac{3}{83}+\frac{7}{84}=\frac{252}{6972}+\frac{581}{6972}=\frac{833}{6972}=\frac{119}{996}\)
\(B=\frac{7}{83}+\frac{3}{84}=\frac{588}{6972}+\frac{249}{6972}=\frac{837}{6972}=\frac{279}{2324}\)
\(\Rightarrow A< B\)
Theo mình kết quả \(=\) nhau