c/m 1+1/2+1/3+1/4+...+1/1024 < 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{1024}\)
\(=1+\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{7}\right)+...+\left(\dfrac{1}{512}+\dfrac{1}{513}+...+\dfrac{1}{1023}\right)+\dfrac{1}{1024}< 1+\dfrac{1}{2}.2+\dfrac{1}{2^2}.2^2+...+\dfrac{1}{2^9}.2^9+\dfrac{1}{1024}\)
\(=1+1+1+1+...+\dfrac{1}{1024}=10+\dfrac{1}{1024}< 11\left(đpcm\right)\)
\(a.\)
\(1-\dfrac{1}{2}\left(\dfrac{3}{2}-2x\right)=4x-\dfrac{1}{4}\)
\(\Rightarrow1-\dfrac{3}{4}+x=4x-\dfrac{1}{4}\)
\(\Rightarrow1-\dfrac{3}{4}+\dfrac{1}{4}=4x-x\)
\(\Rightarrow3x=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{6}\)
\(b.\)
\(x^{10}=1024\)
\(\Rightarrow x^{10}=2^{10}\)
\(\Rightarrow x=2\)
\(c.\)
\(3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
a, \(\left(x+1\right)^2=169\)
\(\left(x+1\right)^2=13^2\)
\(x+1=13\)
\(x=13-1\)
\(x=12\)
1.
a) \(\left(x+1\right)^2=169\)
⇒ \(x+1=\pm13\)
⇒ \(\left[{}\begin{matrix}x+1=13\\x+1=-13\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=13-1\\x=\left(-13\right)-1\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=12\\x=-14\end{matrix}\right.\)
Vậy \(x\in\left\{12;-14\right\}.\)
b) \(\left(x+3\right)^3=-\frac{1}{27}\)
⇒ \(\left(x+3\right)^3=\left(-\frac{1}{3}\right)^3\)
⇒ \(x+3=-\frac{1}{3}\)
⇒ \(x=\left(-\frac{1}{3}\right)-3\)
⇒ \(x=-\frac{10}{3}\)
Vậy \(x=-\frac{10}{3}.\)
c) \(\left(2x-4\right)^4=\frac{1}{625}\)
⇒ \(2x-4=\pm\frac{1}{5}\)
⇒ \(\left[{}\begin{matrix}2x-4=\frac{1}{5}\\2x-4=-\frac{1}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=\frac{1}{5}+4=\frac{21}{5}\\2x=\left(-\frac{1}{5}\right)+4=\frac{19}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{21}{5}:2\\x=\frac{19}{5}:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=\frac{21}{10}\\x=\frac{19}{10}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{21}{10};\frac{19}{10}\right\}.\)
Còn câu d) bạn làm tương tự như mấy câu trên.
Chúc bạn học tốt!
Bạn xem lại đề
đề đúng mà bạn