K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Vì F(x) có 1 nghiệm là 1 

Nên 2a.1 + 5 = 0

=> 2a = -5

=> a = -5/2  

1 tháng 1 2018

Để đa thức có nghiệm là -1 thì 2a.(-1) + 4 = 0 ⇒ -2a + 4 = 0 ⇒ a = 2. Chọn A

NV
20 tháng 3 2022

Đa thức có nghiệm \(\Rightarrow\Delta'=a^2-\left(2a^2+b^2-5\right)\ge0\)

\(\Rightarrow a^2+b^2\le5\)

\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1=\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}+a+b+1\)

\(P\ge\dfrac{\left(a+b\right)^2-5}{2}+a+b+1=\dfrac{1}{2}\left(a+b+1\right)^2-2\ge-2\)

\(P_{min}=-2\) khi \(\left\{{}\begin{matrix}a^2+b^2=5\\a+b+1=0\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;-1\right);\left(-1;2\right)\)

14 tháng 8 2015

a,a+b+c=0 <=>c=-a-b

Khi đ f(x)=ax^2+bx-a-b

f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)

=>f(x) có nghiệm x=1

b,a-b+c=0 <=>c=b-a

Khi đó f(x)=ax^2+bx+b-a

f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)

=>f(x) có nghiệm x=-1

 

11 tháng 4 2017

a. Ta có: \(f\left(1\right)=a.1^2+b.1+c\)

\(f\left(1\right)=a+b+c\)

Mà theo đề bài có a+b+c=0

=>\(f\left(1\right)=0\)

x=1 là một nghiệm của đa thức f(x)

Phần b bạn làm tương tự nhé

17 tháng 10 2016

a là nghiệm của đa thức f(x) thì f(a) = 0

còn x = -1;1 k phải là nghiệm nên f(-1);f(1) khác 0

bn thay x = a (đk nguyêm) ; = 1; =1 vào là tìm dc

17 tháng 10 2016

Trước hết bạn nên nhớ tính chất này (được suy ra từ định lí Bê - du hay ng` ta thường gọi nó là hệ quả của đlí Bê - du) 

Nếu đa thức f(x) có a là nghiệm thì khi phân tích ra nhân tử, f(x) chắc chắn có một thừa số là x - a 

Cái này rất dễ chứng minh, bạn dựa Bê - du: " Số dư trong phép chia f(x) cho x - a đúng bằng f(a)" 

Khi a là nghiệm của f(x) thì f(a) = 0 \Rightarrow f(x) chia hết cho x - a \Rightarrow f(x) = (x - a). B(x) 

Bây giờ đến phần chứng minh phần chính của định lí nghiệm đa thức : Nghiệm nguyên của đa thức(nếu có) phải là ước của hệ số tự do. 

Thật vậy giả sử đa thức aoxn+a1xn−1+a2xn−2+...+an−1.x+anaoxn+a1xn−1+a2xn−2+...+an−1.x+an với các hệ số a0→an∈Za0→an∈Z, có nghiệm x = a (a∈Z)(a∈Z) 

Thế thì cần chứng minh a là ước của anan 

Thật vậy: Theo hệ quả của định lí Bê - du ta có : 

aoxn+a1xn−1+a2xn−2+...+an−1.x+an=(x−a)(b0xn−1+b1xn−2+b2xn−3+...+bn−1)aoxn+a1xn−1+a2xn−2+...+an−1.x+an=(x−a)(b0xn−1+b1xn−2+b2xn−3+...+bn−1) 
trong đó b0→bn−1∈Zb0→bn−1∈Z

Hạng tử bậc thấp nhất ở VP là −a.bn−1−a.bn−1, hạng tử bậc thấp nhất VT là anan 

Do vậy nếu đồng nhất 2 đa thức trên ta sẽ có : 

−abn−1=an−abn−1=an tức là a là ước số của anan

không hiểu chỗ nào thì hỏi mình . 

5 tháng 10 2019

Để phương trình có nghiệm thì : 

\(\Delta_x=a^2-\left(2a^2+b^2-5\right)\ge0\)

\(\Leftrightarrow a^2+b^2\le5\)

\(\Leftrightarrow\left(a+b\right)^2\le5+2ab\)

\(\Leftrightarrow ab\ge\frac{\left(a+b\right)^2-5}{2}\)

Ta có :

\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1\)

\(\ge\frac{\left(a+b\right)^2-5}{2}+\left(a+b\right)+1=\frac{1}{2}\left(a+b+1\right)^2-2\ge-2\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}a=-2\\b=1\end{cases}}\)

15 tháng 8 2015

a) Thay x = 1 ta có :

F(1) = a.1^2 + b.1 + c = a + b + c = 0 

Vậy x = 1 là nghiệm của f(x)

b) thay x = -1 ta có :

f(-1) = a. (-1)^2 + b.(-1) + c 

       = a - b + c = 0 

VẬy x = -1 là nghiệm của f(x) nếu a - b + c = 0

10 tháng 5 2017

khi x=0, suy ra: f(0)=0+b=0 suy ra: b=0

khi x=1, suy ra: f(1)=a+b=0

suy ra: a+0=0

suy ra: a=0

vậy khi f(x) có 2 giá trị khác nhau thì a=b=0

10 tháng 6 2017

Đa thức f(x) có hai giá trị khác nhau là x1 và x2

=> f(x1)=ax1+b=0

và  f(x2)=ax2+b=0

=> ax1+b=ax2+b

=> ax1=ax2

=> ax1-ax2=0

=> a(x1-x2)=0

=> a=0 hoặc (x1-x2)=0

Mà x1 và xlà hai giá trị khác nhau

=>xkhác x2

=> x1-x2 khác 0

=> a=0

Có ax1+b=0

=> 0x1+b=0+b=0

=> b=0

Vậy ...