Cho các phân số 2017/2017, 2017/2018, 18/17, 2018/2017. Phân số lớn nhất là :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1998}{1999}< 1\)
\(\dfrac{2019}{2018}>1\)
\(\dfrac{2017}{2017}=1\)
Phân số lớn nhất \(\dfrac{2019}{2018}\)
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
\(\frac{2016}{2017}=\frac{2017}{2017}-\frac{1}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=\frac{2018}{2018}-\frac{1}{2018}=1-\frac{1}{2018}\)
Ta có : \(\frac{1}{2017}>\frac{1}{2018}\)
=>\(1-\frac{1}{2017}< 1-\frac{1}{2018}\)
=>\(\frac{2016}{2017}< \frac{2017}{2018}\)
\(\frac{7}{8}< \frac{1123}{1124}\)
\(-\frac{10}{11}>\frac{2010}{2011}\)
\(\frac{2018}{2017}>\frac{1018}{1017}\)
\(-\frac{18}{17}>-\frac{2018}{2017}\)
18/17
Dễ thấy \(\dfrac{2017}{2017}=1;\dfrac{2017}{2018}< 1;\dfrac{18}{17}>1;\dfrac{2018}{2017}>1\)
Vậy cần so sánh \(\dfrac{18}{17}=1+\dfrac{1}{17}\) và \(\dfrac{2018}{2017}=1+\dfrac{1}{2017}\)
Mà \(17< 2017\Rightarrow\dfrac{1}{17}>\dfrac{1}{2017}\)
\(\Rightarrow\dfrac{18}{17}>\dfrac{2018}{2017}\)
Vậy phân số lớn nhất là \(\dfrac{18}{17}\)