chứng minh (a+3) (3a+4) chia hết cho 2 em cần gấp mn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ok để 23 ab chia hết cho 2 và 5 thì b = 0
để 23a0 chia hết cho 3 thì tổng 2+3+a+0 = 5 + a phải chia hết cho 3
a= 1;4;7
thay vào ta được số 2310; 2340; 2370 .
Gọi chữ số hàng chục và hàng đơn vị của số là a
Khi đó chữ số hàng trăm của số đó là 7 - 2 * a ( vì tổng các chữ số của số đó là 7 )
Do đó số đó có dạng :\(\overline{\left(7-2\times a\right)aa}=100\times\left(7-2\times a\right)+10\times a+a\)
\(=700-200\times a+10\times a+a\)
\(=700-190\times a+a\)
\(=700-189\times a\)
Ta có : \(700⋮7;189⋮7\Rightarrow700-189\times a⋮7\)
Vậy số đó chia hết cho 7
Gọi số đó là Aef\(\left(\overline{ef}⋮4\right)\)
Ta có : \(\overline{Aef}=10^n\times d+\overline{ef}=4\times25\times10^{n-1}\times d+\overline{ef}\)( với n là số mũ của A )
Vì : \(4⋮4;\overline{ef}⋮4\)
\(\Rightarrow10^n\times d+\overline{ef}⋮4\)
\(\Rightarrow\overline{Aef}⋮4\)
Vậy nếu 1 số có 2 chữ số tận cùng chia hết cho 4 thì số đó chia hết cho 4
a; a - b ⋮ 6
a - b + 12b ⋮ 6
a + 11b ⋮ 6 (đpcm)
b; a - b ⋮ 6
a - b - 12a ⋮ 6
-11a - b ⋮ 6
-(11a + b) ⋮ 6
11a + b ⋮ 6 (đpcm)
a) A = 4 + 4² + 4³ + ... + 4¹²
= 4.(1 + 4 + 4² + 4³ + ... + 4¹¹) ⋮ 4
Vậy A ⋮ 4
b) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4²) + (4³ + 4⁴) + ... + (4¹¹ + 4¹²)
= 4.(1 + 4) + 4³.(1 + 4) + ... + 4¹¹.(1 + 4)
= 4.5 + 4³.5 + ... + 4¹¹.5
= 5.(4 + 4³ + ... + 4¹¹) ⋮ 5
Vậy A ⋮ 5
c) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4¹⁰ + 4¹¹ + 4¹²)
= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4¹⁰.(1 + 4 + 4²)
= 4.21 + 4⁴.21 + ... + 4¹⁰.21
= 21.(4 + 4⁴ + ... + 4¹⁰) ⋮ 21
Vậy A ⋮ 21
i don't now
mong thông cảm !
...........................
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
ta có :
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}\)
\(\Rightarrow A< \frac{99}{100}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
nhiều qá lm sao nổi
\(\left(a+3\right)\left(3a+4\right)\)
-Với \(a\) là số lẻ
\(\Rightarrow a+3\) là số chẵn
\(\Rightarrow\left(a+3\right)\left(3a+4\right)⋮2\left(1\right)\)
-Với \(a\) là số chẵn
\(\Rightarrow3a⋮2\)
\(\Rightarrow3a+4⋮2\)
\(\Rightarrow\left(a+3\right)\left(3a+4\right)⋮2\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow dpcm\)
Để chứng minh rằng (a+3)(3a+4) chia hết cho 2, ta cần chứng minh rằng tổng của hai số này chia hết cho 2.
Ta có:
(a+3)(3a+4) = 3a^2 + 4a + 9a + 12 = 3a^2 + 13a + 12
Để chứng minh rằng 3a^2 + 13a + 12 chia hết cho 2, ta xét hai trường hợp:
1. Khi a là số chẵn:
Nếu a là số chẵn, ta có thể viết a = 2k, với k là một số nguyên.
Thay a = 2k vào biểu thức 3a^2 + 13a + 12, ta được:
3(2k)^2 + 13(2k) + 12 = 12k^2 + 26k + 12 = 2(6k^2 + 13k + 6)
Vì 6k^2 + 13k + 6 là một số nguyên, nên biểu thức trên chia hết cho 2.
2. Khi a là số lẻ:
Nếu a là số lẻ, ta có thể viết a = 2k + 1, với k là một số nguyên.
Thay a = 2k + 1 vào biểu thức 3a^2 + 13a + 12, ta được:
3(2k + 1)^2 + 13(2k + 1) + 12 = 12k^2 + 30k + 28 = 2(6k^2 + 15k + 14)
Vì 6k^2 + 15k + 14 là một số nguyên, nên biểu thức trên chia hết cho 2.
Vậy, ta đã chứng minh được rằng (a+3)(3a+4) chia hết cho 2.