Cho A=1+2012+20122+20123+....+201272 và B=201273-1
a,So sánh A và B
b,Tính AxB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2012 + 2012^2 + ... + 2012^71 + 2012^72
2012A = 2012 + 2012^2 + 2012^3 + ... + 2012^72 + 2012^73
2012A - A = ( 2012 + 2012^2 + 2012^3 + ... + 2012^72 + 2012^73) - ( 1 + 2012 + 2012^2 + ... + 2012^71 + 2012^72)
2011A = 2012^73 - 1 = B
=> A = 2012^73 - 1/2011
=> A < B
Ta có A=1+2012+20122+...+201272
A.2012=2012+20122+...+201272+201273
A.2012-A=(2012+20122+...+201272+201273)-(1+2012+20122+...+201272)
A.2011=201273-1
A=(201273-1):2011
Vì 201273-1=201273-1 suy ra A<B
A=1+2012+2012 mũ 2 + 2012 mũ 3+.............+2012 mũ 72
A=2012^0+2012^1+2012^2+....+2012^72
2012A=2012^1+2012^2+.....+2012^73
2012A-A=2012^73-1
A=(2012^73-1)/2011<2012^73-1
a) \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)< 3^{32}-1=B\)
b) \(A=2011.2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2=B\)
Lời giải:
$A=1+2012+2012^2+2012^3+...+2012^{73}$
$2012A=2012+2012^2+2012^3+2012^4+...+2012^{74}$
$\Rightarrow 2012A-A=2012^{74}-1$
$\Rightarrow 2011A=2012^{74}-1$
$2011B = 2011(2012^{73}-1)=2012^{73}(2012-1)-2011$
$=2012^{74}-2012^{73}-2011< 2012^{74}-1=2011A$
$\Rightarrow B< A$
A=1+2012+20122+20123+.....+201272
=>2012A=2012+20122+20123+20124+...+201273
=>2012A-A=(2012+20122+20123+20124+...+201273)-(1+2012+20122+20123+....+201272)
=>2011A=201273-1
=>\(A=\frac{2012^{73}-1}{2011}<2012^{73}-1=B\)
=>A<B