tìm min A = x^2-3x+16 / x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này
Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)
Đẳng thức xảy ra khi và chỉ khi \(a=4\)
Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)
\(A=x-4-2\sqrt{x-4}+1+6=\left(\sqrt{x-4}-1\right)^2+6\ge6\)
dấu \(=\)xảy ra khi \(\sqrt{x-4}=1\Leftrightarrow x=5\)
\(B=\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\ge\sqrt{4}+\sqrt{1}=3\)
Dấu \(=\)xảy ra khi \(x=2\)
\(P=x^2-xy+y^2-3x-3y+16\)
\(2P=2x^2-2xy+2y^2-6x-6y+32\)
\(2P=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+\left(y^2-6x+9\right)+14\)
\(2P=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2+14\ge14\)
Dấu "=" xảy ra tại \(x=y=3\)
Mình đoán đề bị sai,mình đã sửa rồi nhé !
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
\(\left|x^2+x+16\right|=x^2+\left|x+16\right|\)( vì \(x^2\ge0\))
\(\left|x^2+x-6\right|=x^2+\left|x-6\right|\)(vì \(x^2\ge0\))
\(\left|x+16\right|+\left|x-6\right|=\left|x+16\right|=\left|-x+6\right|\ge\left|22\right|=22\)
dấu = xảy ra khi và chỉ khi \(\left(x+16\right).\left(-x+6\right)\ge0\Rightarrow-16\le x\le6\)(1)
\(x^2\ge0\Rightarrow x^2+x^2\ge0\)
dấu = xảy ra khi và chỉ khi x=0 (2)
=> \(x^2+\left|x+16\right|+x^2+\left|x-6\right|\ge22+0=22\)
dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra
=> x=0
Vậy min A=22 khi và chỉ khi x=0
p/s: ko chắc lắm, sai sót bỏ qua :))