Tìm giá trị nhỏ nhất của
A= (2x+1/5) + (2x+1/6)+ (2x+1/7)
Dấu ( ) mọi người hiểu là dấu giá trị tuyệt đối nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*\(x\ge\dfrac{1}{2}\Leftrightarrow\left|2x-1\right|=2x-1\)
\(D=\left(2x-1\right)^2-3\left(2x-1\right)+2=\left(2x-1\right)^2-2.\dfrac{3}{2}\left(2x-1\right)+\dfrac{9}{4}-\dfrac{1}{4}=\left(2x-1-\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(2x-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)\(D_{min}=-\dfrac{1}{4}\Leftrightarrow x=\dfrac{5}{4}\left(1\right)\)
*\(x< \dfrac{1}{2}\Leftrightarrow\left|2x-1\right|=-2x+1\)
\(D=\left(2x-1\right)^2+3\left(2x-1\right)+2=\left(2x-1\right)^2+2.\dfrac{3}{2}\left(2x-1\right)+\dfrac{9}{4}-\dfrac{1}{4}=\left(2x-1+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(2x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)\(D_{min}=-\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\left(2\right)\)
-Từ (1) và (2) suy ra \(D_{min}=-\dfrac{1}{4}\Leftrightarrow x\in\left\{\dfrac{5}{4};\dfrac{-1}{4}\right\}\)
\(|2x-8|+|-20|=|2x-8|+20\)
biểu thức nhỏ nhất khi x=0
\(Min=2.0-8+20=12\)
\(A=\left|2x-1\right|+5\ge5\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(B=\left|2x-2014\right|+2015\ge2015\forall x\)
Dấu '=' xảy ra khi x=1007
a) | 2x - 1 | = 1- 3x
\(\orbr{\begin{cases}2x-1=1-3x\\2x-1=-\left(1-3x\right)\end{cases}}\)
\(\orbr{\begin{cases}2x-3x=1+1\\2x-1=-1+3x\end{cases}}\)
\(\orbr{\begin{cases}-x=2\\2x+3x=-1+1\end{cases}}\)
\(\orbr{\begin{cases}x=-2\\5x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}\)
b) | 1 - 2x | = x + 1
\(\orbr{\begin{cases}1-2x=x+1\\1-2x=-\left(x+1\right)\end{cases}}\)
\(\orbr{\begin{cases}-2x-x=1-1\\-2x+x=-1-1\end{cases}}\)
\(\orbr{\begin{cases}-3x=0\\-x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
tương tự
các bạn thông cảm mình ko biết viết dấu giá trị tuyệt đối ở trong này
nếu cậu muốn giá trị tuyệt đối thay vì cái dấu ngoặc vuông ấy thì chỉ cần bấm và giữ shift với phím bên trái của phím end là ra giá trị tuyệt đối thôi