Cho a,b,c là các số thực không âm.Chứng minh:
a+b+c>= √ab+√ac+√bc. Ai giúp mình với mình tick cho nhé tks trc :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P.s: xin lỗi bn vì mấy thg ko có não này spam
\(BDT\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\)
\(\le\left(c+a-c\right)\left(c+b-c\right)=ab\)
\(\Rightarrow VT^2\le ab\Rightarrow VT\le\sqrt{ab}=VP\)
=>1/2.2/3.3/4 = ab.bc.ca
<=> 1/4 = (abc)^2
=> abc = 1/2 hoặc abc = -12
=> a=4/3 ; b = 2/3 ; c=1 hoặc a=-4/3 ; b=-2/3 ; c=-1
k mk nha
Ta có: ab.bc.ac = \(\frac{1}{2}\). \(\frac{2}{3}\).\(\frac{3}{4}\)= \(\frac{1}{4}\)
\(\Leftrightarrow\)(abc)2 =\(\frac{1}{4}\)
\(\Leftrightarrow\)abc = \(\pm\) \(\sqrt{\frac{1}{4}}\)= \(\pm\)\(\frac{1}{2}\)
\(\Rightarrow\)\(\hept{\begin{cases}a=\pm\frac{3}{4}\\b=\pm\frac{2}{3}\\c=\pm1\end{cases}}\)
a+b>= 2 căn ab
tương tự cộng theo vế với thu gọn
bạn có thể giải chi tiết hơn giúp mình dc k. Tks :v