Cho▲ABC cân tại A, trên tia đối của tia của tia BA và CA lấy D và E sao cho BD=CE.c/m:
a)DE song song với BC
b)kẻ DM vuông góc với BC, EN vuông góc với BC, c/m DM=EN
c)▲AMN là ▲ gì?
VẼ HÌNH GIÚP!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(1)
Ta có: AD=AB+BD(B nằm giữa A và D)
AE=AC+CE(C nằm giữa A và E)
mà AB=AC(ΔABC cân tại A)
và BD=CE(gt)
nên AD=AE
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
Ta có: ΔADE cân tại A(cmt)
nên \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{ADE}\)
mà \(\widehat{ABC}\) và \(\widehat{ADE}\) là hai góc ở vị trí đồng vị
nên BC//DE(Dấu hiệu nhận biết hai đường thẳng song song)
b) Ta có: \(\widehat{DBM}=\widehat{ABC}\)(hai góc đối đỉnh)
\(\widehat{ECN}=\widehat{ACB}\)(hai góc đối đỉnh)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{DBM}=\widehat{ECN}\)
Xét ΔDBM vuông tại M và ΔECN vuông tại N có
BD=CE(gt)
\(\widehat{DBM}=\widehat{ECN}\)(cmt)
Do đó: ΔDBM=ΔECN(cạnh huyền-góc nhọn)
nên DM=EN(hai cạnh tương ứng)
c) Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
BM=CN(ΔDBM=ΔECN)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACN(c-g-c)
nên AM=AN(hai cạnh tương ứng)
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
a: Xét ΔADE có
AB/BD=AC/CE
nên BC//DE
b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có
DB=EC
\(\widehat{DBM}=\widehat{ECN}\)
Do đó: ΔDBM=ΔECN
Suy ra: DM=EN
c: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
a: Xét ΔABC có AB/BD=AC/CE
nên BC//DE
b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có
BD=CE
góc DBM=góc ECN
=>ΔDBM=ΔECN
=>DM=EN và BM=CN
c: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
=>ΔAMN cân tại A
Ta có BD=CE(gt);AB=AC(gt)
mà AB+BD=AD và AC+CE=AE
=> AD=AE
=>ΔADE cân tại A ( Có hai góc bằng nhau)
=>góc ADE= góc AED=(180 độ - DAE) :2 (2)
Từ (1) và (2) => góc ABC= góc ADE=góc ACB=góc AED
mà góc ABC và góc ADE ở vị trí đồng vị
=>BC // DE(đpcm)
b)ta có góc ABC= góc MBD (đối đỉnh )
góc ACB= góc NCE( đối đỉnh )
mà Góc ABC=Góc ACB => góc MBD= góc NCE
Xét hai tam giác vuông ΔBMD và ΔCNE
có BD=CE (gt)
góc MBD= góc NCE (c/m trên)
=>ΔBMD=ΔCNE(Cạnh huyền - Góc nhọn)
=> DM=EN(Hai cạnh tương ứng)
Hình như đề bài sai rồi bạn kiểm tra lại đề bài với câu a nhé
a,Ta có ΔABC cân ở góc A => góc ABC=góc ACB =180(độ)−BAC2(1)
Ta có BD=CE(gt);AB=AC(gt)
mà AB+BD=AD và AC+CE=AE
=> AD=AE
=>ΔADE cân tại A ( Có hai góc bằng nhau)
=>góc ADE= góc AED=(180 độ - DAE) :2 (2)
Từ (1) và (2) => góc ABC= góc ADE=góc ACB=góc AED
mà góc ABC và góc ADE ở vị trí đồng vị
=>BC // DE(đpcm)
b)ta có góc ABC= góc MBD (đối đỉnh )
góc ACB= góc NCE( đối đỉnh )
mà Góc ABC=Góc ACB => góc MBD= góc NCE
Xét hai tam giác vuông ΔBMD và ΔCNE
có BD=CE (gt)
góc MBD= góc NCE (c/m trên)
=>ΔBMD=ΔCNE(Cạnh huyền - Góc nhọn)
=> DM=EN(Hai cạnh tương ứng)
c) Gọi giao điểm của AM và BI là E
giao điểm của AN và CI là F
Vì ΔBMD=ΔCNE( chứng minh trên ) =>BM=CN( Hai cạnh tương ứng)
Ta có : Góc ABC= Góc ACB ( gt)
mà Góc ABC + Góc ABM=180 độ ( kề bù)
và Góc ACB+góc ACN= 180 độ ( kề bù)
=>Góc ABM=góc ACN
Xét ΔABM VÀ ΔACN có:
AB=AC(gt)
Góc ABM=Góc ACN(cmt)
BM=CM ( cmt)
=> ΔABM=ΔACN(c−g−c)
=> Góc AMB=Góc ANC (hai góc tương ứng )
=> ΔAMN Cân ở A ( có hai góc bằng nhau) (đpcm)
D,(hơi dài )
ta có tam giác AMN cân ở A=> AM=AN( hai cạnh bên) (3)
Xét hai tam giác vuông Tam giác EMB và tam giác FCN có:
Góc EMB=góc FNC (cmt)
MB=CN(cmt)
=> tam giác EMB= tam giác FNC ( cạnh huyền -góc nhọn)
=>EM=FN(hai cạnh tương ứng ) (4)
Ta có (3) (4) mà AE+EM=AM và AF+FN=AN
=> AE=AF
Xét hai tam giác vuông tam giác AEI và tam giác AFI có
AI cạnh chung
AE=AF(cmt)
=> tam giác AEI = Tam giác AFI (cạnh huyền-cạnh góc vuông)
=>Góc AIE=Góc AIF( góc tương ứng ) (10)
ta có góc EBM+MBD=góc EBD= góc ABI (đối đỉnh)(5)
góc FCN+NCE= Góc FCE= góc ACI( đối đỉnh )(6)
mà góc EBM= góc FCN (cmt)(7)
góc MDB=góc NCE(gt) (8)
từ (5)(6)(7)(8)=> góc ABI = góc ACI (9)
từ (9) (10)=> góc BAI=góc CAI ( tổng 3 góc của một tam giác ) (đpcm)
Chúc bạn học giỏi nha Thiên Yết >.<
`#040911`
a)
Ta có:
\(\left\{{}\begin{matrix}\text{AB = AC (tg ABC cân tại A)}\\\text{BD = CE (gt)}\end{matrix}\right.\)
`\Rightarrow \text {AD = AE}`
Xét `\Delta ADE:`
`AD = AE`
`\Rightarrow Delta ADE` cân tại A
`\Rightarrow`\(\widehat{\text{ADE}}=\widehat{\text{AED}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(1)`
`\Delta ABC` cân tại A
`\Rightarrow`\(\widehat{\text{ABC}}=\widehat{\text{ACB}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(2)`
Từ `(1)` và `(2)`
`\Rightarrow`\(\widehat{\text{ABC}}=\widehat{\text{ADE}}\)
Mà `2` góc này nằm ở vị trí đồng vị
`\Rightarrow \text {DE // BC (t/c 2 dt' //)}`
b)
Ta có:
\(\widehat{ABC}=\widehat{ACB}\text{ }\left(\Delta ABC\text{ cân tại A}\right)\)
Mà \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{MBD}\text{ }\left(\text{đối đỉnh}\right)\\\widehat{ACB}=\widehat{NCE}\text{ }\left(\text{đối đỉnh}\right)\end{matrix}\right.\)
`\Rightarrow`\(\widehat{\text{MBD}}=\widehat{\text{NCE}}\)
Xét `\Delta MBD` và `\Delta NCE:`
\(\widehat{\text{BMD}}=\widehat{\text{CNE}}\left(=90^0\right)\)
\(\text{BD = CE (gt)}\)
\(\widehat{\text{MBD}}=\widehat{\text{NCE}}\text{ (CMT)}\)
`\Rightarrow Delta MBD = \Delta NCE (ch - gn)`
`\Rightarrow \text {DM = EN (2 cạnh tương ứng)}`
c)
Vì `\Delta MBD = \Delta NCE (b)`
`\Rightarrow \text {BM = CN (2 cạnh tương ứng)}`
Ta có:
\(\left\{{}\begin{matrix}\widehat{\text{ABM}}+\widehat{\text{ABC}}=180^0\text{ (kề bù)}\\\widehat{\text{ACN}}+\widehat{\text{ACB}}=180^0\text{ (kề bù)}\end{matrix}\right.\)
Mà \(\widehat{\text{ABC}}=\widehat{\text{ACB}}\) `(\Delta ABC` cân tại A`)`
`\Rightarrow`\(\widehat{\text{ABM}}=\widehat{\text{ACN}}\)
Xét `\Delta AMB` và `\Delta ANC:`
\( \text{AB = AC }\left(\Delta\text{ABC cân tại A}\right)\\ \widehat{\text{ABM}}=\widehat{\text{ACN}}\\ \text{BM = CN (CMT)}\)
`\Rightarrow \Delta AMB = \Delta ANC (c-g-c)`
`\Rightarrow \text {AM = AN (2 cạnh tương ứng)}`
Xét `\Delta AMN`
`\text {AM = AN}`
`\Rightarrow \Delta AMN` là `\Delta` cân.
bn ơi mình thấy câu b kẻ thêm nó cứ sao ý
bn có chép đúng đề bài ko