Tìm x thuộc Z để A thuộc Z.
A= \(\frac{1-2x}{x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1-2x}{x+3}=\frac{-2x+1}{x+3}=\frac{-2x-6+7}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)
Vì \(-2\inℤ\)\(\Rightarrow\)Để \(A\inℤ\)thì \(\frac{7}{x+3}\inℤ\)
\(\Rightarrow7⋮x+3\)\(\Rightarrow x+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{-10;-4;-2;4\right\}\)
Vậy \(x\in\left\{-10;-4;-2;4\right\}\)
ĐK:\(x\ne-3\)
Với \(A=\frac{1-2X}{X+3}=\frac{-2x-6+7}{x+3}=\frac{-2+7}{x+3}\)
A nguyên <=>\(x+3\inƯ\left(7\right)\)\(\Rightarrow x\in\left\{1;-1;7;-7\right\}\)
Vậy...
\(=>A=\frac{-\left(2x-1\right)}{x+3}=\frac{-2x+1}{x+3}=\frac{-2x-6+7}{x+3}=-2+\frac{7}{x+3}\)\(=>\frac{7}{2x+3}\)thuộc Z
=> 7 chia hết cho 2x+3
đến đây bạn tự giải nhé
a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì x - 2 là ước của 5.
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
* x = 3 => A = 6
* x = 7 => A = 2
* x = 1 => A = - 4
* x = -3 => A = 0
b) \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì x + 3 là ước của7.
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
* x = -2 => A = 5
* x = 4 => A = -1
* x = -4 => A = - 9
* x = -10 => A = -3 .
Để x thuộc Z thì : à dấu " : " là " chia hết cho " nhá ^^
2x - 1 : x + 2
2x + 2 -3 : x + 2
mà 2x + 2 : x + 2 => 3 : x + 2 => x + 2 thuộc Ư(3) = { 1; -1; 3; -3 }
+) x + 2 = 1
x = -1
+) x + 2 = -1
x = -3
+) x + 2 = 3
x = 1
+) x + 2 = -3
x = -5
Vậy,.........
a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)
\(\Rightarrow10x+20-7⋮2x+4\)
\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)
\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)
\(5\left(2x+4\right)⋮2x+4\)
\(\Rightarrow7⋮2x-4\)
tới đây bn liệt kê Ư(7) rồi làm tiếp.
b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)
để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất
=> 2x+4 là số nguyên dương nhỏ nhất
+ xét 2x+4 = 1
=> 2x = -3
=> x = -1,5 loại vì x thuộc Z
+ xét 2x+4=2
=> 2x = -2
=> x = -1 (tm)
vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)
Ta thấy:
\(A=\frac{1-2x}{x+3}=\frac{7-6-2x}{x+3}=\frac{7-\left(6+2x\right)}{x+3}=\frac{7-2\left(3+x\right)}{x+3}=\frac{7}{x+3}-\frac{2\left(3+x\right)}{x+3}=\frac{7}{x+3}-2\)
Do \(2\in Z\), để \(A=\frac{1-2x}{x+3}\in Z\) thì \(\frac{7}{x+3}\in Z\)
\(\Rightarrow x+3\in U\left(7\right)=\left\{-7;-1;1;7\right\}\)
* TH1: x + 3 = -7 => x = -10
* TH2: x + 3 = -1 => x = -4
* TH3: x + 3 = 1 => x = -2
* TH4: x + 3 = 7 => x = 4
Vậy \(x\in\left\{-10;-4;-2;4\right\}\)