let S be 1!(12+1+1)+2!(22+2+1)+3!(32+3+1)+...+100!(1002+100+1). Find S+1/101!.(as usual, k! = 1.2.3.....(k-1).k)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
Ta có k(k+1)(k+2) = 41 k(k+1)(k+2).4
= 41 k(k+1)(k+2).[(k+3) – (k-1)]
= 41 k(k+1)(k+2)(k+3) - 41 k(k+1)(k+2)(k-1)
⇒S =41.1.2.3.4 -41.0.1.2.3 + 41.2.3.4.5 -41.1.2.3.4 +…+41 k(k+1)(k+2)(k+3) -41 k(k+1)(k+2)(k-1)
= 41 k(k+1)(k+2)(k+3)4S + 1
= k(k+1)(k+2)(k+3) + 1Theo kết quả bài 2
⇒ k(k+1)(k+2)(k+3) + 1 là số chính phương.
Ta có : \(k\left(k+1\right)\left(k+2\right)=\frac{1}{4}k\left(k+1\right)\left(k+2\right).4\)
\(=\frac{1}{4}k\left(k+1\right)\left(k+2\right)\left[\left(k+3\right)-\left(k-1\right)\right]\)
\(=\frac{1}{4}k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\frac{1}{4}k\left(k+1\right)\left(k+2\right)\left(k-1\right)\)
=> 4S = 1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+k(k+1)(k+2)(k+3)-k(k+1)(k+2)(k-1)
\(=k\left(k+1\right)\left(k+2\right)\left(k+3\right)\)
=> \(4S+1=k\left(k+1\right)\left(k+2\right)\left(k+3\right)+1\)
\(=\left[k\left(k+3\right)\right]\left[\left(k+1\right)\left(k+2\right)\right]+1\)
\(=\left[\left(k^2+3k\right)\left(k^2+k+2k+2\right)\right]+1\)
Đặt \(t=k^2+3k\)
\(=>4S+1=t\left(t+2\right)+1\)
= \(t^2+2t+1\)
\(=\left(t+1\right)^2\)
\(=>4S+1=\left(k^2=3k\right)^2=>4S+1\) là số chính phương
Ta có: \(\dfrac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(=\dfrac{101+\left(100+1\right)\cdot50}{101-\left[100-99+98-97+...+2-1\right]}\)
\(=\dfrac{101\cdot51}{101-1\cdot50}\)
\(=\dfrac{101\cdot51}{101-50}=101\)
5,Ta có
A=1/2+1/2^2+1/2^3+...+1/2^100
2A=1+1/2+1/2^2+1^2/3+...+1/2^99
2A-A=(1+1/2+1/2^2+1^2/3+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^100)
A=1-1/2^100
Each term of S is n!(n2 + n + 1) = n![n(n + 1) + 1] = n(n + 1)n! + n!
By definition, n(n + 1)n! + n! = n! + n(n + 1)!
Therefore, S can be simplified as
1! + 1.2! + 2! + 2.3! + ... + 100! + 100.101!
So \(\dfrac{S+1}{101!}=\dfrac{1+1!+1\cdot2!+2!+2\cdot3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{2!+1\cdot2!+2!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{3!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{4!+3\cdot4!+4!+...+100!+100\cdot101!}{101!}\)
\(=...\)
\(=\dfrac{100!+99\cdot100!+100!+100\cdot101!}{101!}\)
\(=\dfrac{101!+100\cdot101!}{101!}\)
\(=1+100=101\)
Hence, \(\dfrac{S+1}{101!}=101\)