2^x = 2 + 2 + 2^2 +...+ 2^ 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
what hell ?
Bạn giải hộ ai à?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.vi diệu !
Ta có:
\(T\left(-2\right)=a_0-2a_1+2^2a_2-...-2^{29}a_{29}+2^{30}a_{30}=a_0+H=\left(1+4\right)^{15}\)
\(\Leftrightarrow1+H=5^{15}\)
\(\Leftrightarrow H=5^{15}-1\)
Bài 2:
\(a,45+170+25+30\)
\(=\left(45+25\right)+\left(170+30\right)\)
\(=60+200=260\)
Bài 3:
\(a,\left(x-6\right).5=150\)
\(x-6=150:5\)
\(x-6=30\)
\(x=30+6\)
\(x=36\)
\(b,2^5.\left(3x-2\right)=2^3.2^6\)
\(2^5.\left(3x-2\right)=2^{3+6}\)
\(2^5.\left(3x-2\right)=2^9\)
\(3x-2=2^9:2^5\)
\(3x-2=2^4=16\)
\(3x=16+2\)
\(3x=22\)
\(x=22:3\)
\(x\approx7,3\)
\(c,100-7.\left(x-5\right)=51\)
\(7.\left(x-5\right)=100-51\)
\(7.\left(x-5\right)=49\)
\(x-5=49:7\)
\(x-5=7\)
\(x=7+5\)
\(x=12\)
Phần d) bạn thiếu dữ liệu ạ.
a.
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow x\left(x+1\right).\left(x-1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(a=x^2+x-1\) , ta có pt:
\(\left(a+1\right)\left(a-1\right)-24=0\)
\(\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\)
\(\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=5\\a=-5\end{matrix}\right.\)
*Với a = 5 ta được:
\(x^2+x-1=5\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(2x+6\right)=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
*Với a = -5 ta được:
\(x^2+x-1=-5\)
\(\Leftrightarrow x^2+x+4=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) ( loại)
Vậy pt có tập nghiệm là: \(s=\left\{-3;2\right\}\)
c)(ĐKXĐ: x khác 30;29)
\(\Leftrightarrow\dfrac{x-29}{30}-1+\dfrac{x-30}{29}-1=\dfrac{29}{x-30}-1+\dfrac{30}{x-29}-1\)
\(\Leftrightarrow\dfrac{x-59}{30}+\dfrac{x-59}{29}=\dfrac{x-59}{30-x}+\dfrac{x-59}{29-x}\)
\(\Leftrightarrow x=59\)(tm) or \(\dfrac{1}{30}+\dfrac{1}{29}-\dfrac{1}{30-x}-\dfrac{1}{29-x}=0\)
\(\Leftrightarrow\dfrac{-x}{30\left(30-x\right)}+\dfrac{-x}{29\left(29-x\right)}=0\)
\(\Leftrightarrow x=0\)(tm) or \(\dfrac{1}{30\left(30-x\right)}+\dfrac{1}{29\left(29-x\right)}=0\)
\(\Leftrightarrow1741-59x=0\)
\(\Leftrightarrow x=\dfrac{1741}{59}\left(tm\right)\)
Vậy S={0;\(\dfrac{1741}{59}\);59}
x-2/12 + x-2/20+....+x-2/72
=x-2/3.4+ x-2/ 4.5+...+x-2/8.9
=(x-2).1/3.4.1+(x-2).1/4.5.1+......+(x-2).1/8.9.1
=x-2/1(1/3.4+1/4.5+....+1/8.9)
=x-2(1/3 -1/4 +1/4 -1/5+...+1/8-1/9)
=x-2(1/3-1/9)
=(x-2).2/9
=2x-4/9
<=> 30x + 60 - 2x + 10 - 24 = 30
<=> 28x + 46 =30
<=> 28x = -16
<=> x = -4/7
\(2^x=2+2+2^2+...+2^{30}\)
\(\Rightarrow2^x=1+\left(1+2+2^2+...+2^{30}\right)\)
\(\Rightarrow2^x=1+\dfrac{2^{30+1}-1}{2-1}\)
\(\Rightarrow2^x=1+2^{31}-1\)
\(\Rightarrow2^x=2^{31}\)
\(\Rightarrow x=31\)