Chứng minh hằng đẳng thức;
\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cosα = OH¯; sinα = OK¯
Do tam giác OMK vuông tại K nên:
sin2 α + cos2 α = OK¯2 + OH¯2 = OK2 + MK2 = OM2 = 1.
Vậy sin2 α + cos2 α = 1.
CM HĐT là
VD CM
( x + y)^2 = x^2 + 2xy + y^2
Phải không bạn
\(\left(x+a\right)\left(x+b\right)\)
=>\(x^2+bx+ax+ab\)
=>\(x^2+\left(a+b\right)x+ab\)(ĐPCM)
Nhớ H cho mik nhé, các bạn.
Biến đổi vế trái:
a + b + c 3 = a + + c 3 = a + b 3 +3 a + b 2 c+3(a+b) c 2 + c 3
= a 3 + 3 a 2 b + 3a b 2 + b 3 + 3( a 2 + 2ab + b 2 )c + 3a c 2 + 3b c 2 + c 3
= a 3 + 3 a 2 b + 3a b 2 + b 3 + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2 + 3b c 2 + c3
= a 3 + b 3 + c 3 + 3 a 2 b + 3a b 2 + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2 + 3b c 2
= a 3 + b 3 + c 3 + (3 a 2 b + 3a b 2 ) +( 3 a 2 c + 3abc)+ (3abc + 3 b 2 c)+(3a c 2 + 3b c 2 )
= a 3 + b 3 + c 3 + 3ab(a + b) + 3ac(a + b) + 3bc(a + b) + 3 c 2 (a + b)
= a 3 + b 3 + c 3 + 3(a + b)(ab + ac + bc + c 2 )
= a 3 + b 3 + c 3 + 3(a + b)[a(b + c) + c(b + c)]
= a 3 + b 3 + c 3 + 3(a + b)(b + c)(a + c) (đpcm)
\(x^2+x+\frac{1}{2}\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}>;0\forall x\)
Vậy đa thức trên vô nghiệm
\(a^2+b^2\) = (a+b)\(^2\) - 2ab
ta có
(a+b)\(^2\) - 2ab
= a\(^2\) + 2ab + b\(^2\) - 2ab
= a\(^2\) + b\(^2\) ( đpcm)
Đặt \(A=x-x^2-1\)\(\Rightarrow2A=2x-2x^2-2=-\left(x^2-2x+1\right)-x^2-1=-\left[\left(x-1\right)^2+x^2\right]-1< 0\)
\(\Rightarrow2A< 0\Rightarrow A< 0\)
Để chứng minh hằng đẳng thức a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a) = (a+b+c)^3, ta sẽ sử dụng công thức khai triển đa thức.
Theo công thức khai triển đa thức, ta có:
(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)
Vậy, hằng đẳng thức được chứng minh.