1)cho tan alpha=2/3.Tính các tỉ số lược giác 4) cho Sin alpha+ Có alpha= căn . Tính các tỉ số lượng giác 5) cho Tan alpha =2. Tính P=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(0<\alpha <\frac{\pi }{2} \) nên \(\sin \alpha > 0\). Mặt khác, từ \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) suy ra
\(\sin \alpha = \sqrt {1 - {{\cos }^2}a} = \sqrt {1 - \frac{1}{{25}}} = \frac{{2\sqrt 6 }}{5}\)
Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{2\sqrt 6 }}{5}}}{{\frac{1}{5}}} = 2\sqrt 6 \) và \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{\frac{1}{5}}}{{\frac{{2\sqrt 6 }}{5}}} = \frac{{\sqrt 6 }}{{12}}\)
b) Vì \(\frac{\pi }{2} < \alpha < \pi\) nên \(\cos \alpha < 0\). Mặt khác, từ \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) suy ra
\(\cos \alpha = \sqrt {1 - {{\sin }^2}a} = \sqrt {1 - \frac{4}{9}} = -\frac{{\sqrt 5 }}{3}\)
Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{2}{3}}}{{-\frac{{\sqrt 5 }}{3}}} = -\frac{{2\sqrt 5 }}{5}\) và \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{-\frac{{\sqrt 5 }}{3}}}{{\frac{2}{3}}} = -\frac{{\sqrt 5 }}{2}\)
c) Ta có: \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt 5 }}\)
Ta có: \({\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }} \Rightarrow {\cos ^2}\alpha = \frac{1}{{{{\tan }^2}\alpha + 1}} = \frac{1}{6} \Rightarrow \cos \alpha = \pm \frac{1}{{\sqrt 6 }}\)
Vì \(\pi < \alpha < \frac{{3\pi }}{2} \Rightarrow \sin \alpha < 0\;\) và \(\,\,\cos \alpha < 0 \Rightarrow \cos \alpha = -\frac{1}{{\sqrt 6 }}\)
Ta có: \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha = \tan \alpha .\cos \alpha = \sqrt 5 .(-\frac{1}{{\sqrt 6 }}) = -\sqrt {\frac{5}{6}} \)
d) Vì \(\cot \alpha = - \frac{1}{{\sqrt 2 }}\;\,\) nên \(\,\,\tan \alpha = \frac{1}{{\cot \alpha }} = - \sqrt 2 \)
Ta có: \({\cot ^2}\alpha + 1 = \frac{1}{{{{\sin }^2}\alpha }} \Rightarrow {\sin ^2}\alpha = \frac{1}{{{{\cot }^2}\alpha + 1}} = \frac{2}{3} \Rightarrow \sin \alpha = \pm \sqrt {\frac{2}{3}} \)
Vì \(\frac{{3\pi }}{2} < \alpha < 2\pi \Rightarrow \sin \alpha < 0 \Rightarrow \sin \alpha = - \sqrt {\frac{2}{3}} \)
Ta có: \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} \Rightarrow \cos \alpha = \cot \alpha .\sin \alpha = \left( { - \frac{1}{{\sqrt 2 }}} \right).\left( { - \sqrt {\frac{2}{3}} } \right) = \frac{{\sqrt 3 }}{3}\)
1) \(cot\alpha=\sqrt[]{5}\Rightarrow tan\alpha=\dfrac{1}{\sqrt[]{5}}\)
\(C=sin^2\alpha-sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow C=\dfrac{1}{cos^2\alpha}\left(tan^2\alpha-tan\alpha+1\right)\)
\(\Leftrightarrow C=\left(1+tan^2\alpha\right)\left(tan^2\alpha-tan\alpha+1\right)\)
\(\Leftrightarrow C=\left(1+\dfrac{1}{5}\right)\left(\dfrac{1}{5}-\dfrac{1}{\sqrt[]{5}}+1\right)\)
\(\Leftrightarrow C=\dfrac{6}{5}\left(\dfrac{6}{5}-\dfrac{\sqrt[]{5}}{5}\right)=\dfrac{6}{25}\left(6-\sqrt[]{5}\right)\)
1: \(cota=\sqrt{5}\)
=>\(cosa=\sqrt{5}\cdot sina\)
\(1+cot^2a=\dfrac{1}{sin^2a}\)
=>\(\dfrac{1}{sin^2a}=1+5=6\)
=>\(sin^2a=\dfrac{1}{6}\)
\(C=sin^2a-sina\cdot\sqrt{5}\cdot sina+\left(\sqrt{5}\cdot sina\right)^2\)
\(=sin^2a\left(1-\sqrt{5}+5\right)=\dfrac{1}{6}\cdot\left(6-\sqrt{5}\right)\)
2: tan a=3
=>sin a=3*cosa
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=1+9=10\)
=>\(cos^2a=\dfrac{1}{10}\)
\(B=\dfrac{3\cdot cosa-cosa}{27\cdot cos^3a+3\cdot cos^3a+2\cdot3\cdot cosa}\)
\(=\dfrac{2\cdot cosa}{30cos^3a+6cosa}=\dfrac{2}{30cos^2a+6}\)
\(=\dfrac{2}{3+6}=\dfrac{2}{9}\)
sin a=12/13
cos^2a=1-(12/13)^2=25/169
=>cosa=5/13
tan a=12/13:5/13=12/5
cot a=1:12/5=5/12
sin b=căn 3/2
cos^2b=1-(căn 3/2)^2=1/4
=>cos b=1/2
tan b=căn 3/2:1/2=căn 3
cot b=1/căn 3
Bài 1:
a) Ta có:
\(tanB=\dfrac{AC}{AB}\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{2}\)
\(\Rightarrow AC=\dfrac{AB\cdot5}{2}=\dfrac{6\cdot5}{2}=15\)
b) Áp dụng Py-ta-go ta có:
\(BC^2=AB^2+AC^2=6^2+15^2=261\)
\(\Rightarrow BC=\sqrt{261}=3\sqrt{29}\)
Bài 2:
\(\left\{{}\begin{matrix}sinM=sin40^o\approx0,64\Rightarrow cosN\approx0,64\\cosM=cos40^o\approx0,77\Rightarrow sinN\approx0,77\\tanM=tan40^o\approx0,84\Rightarrow cotN\approx0,84\\cotM=cot40^o\approx1,19\Rightarrow tanN\approx1,19\end{matrix}\right.\)
Lời giải:
\(M=\frac{\frac{\sin a}{\cos a}+1}{\frac{\sin a}{\cos a}-1}=\frac{\tan a+1}{\tan a-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=-4\)
\(N = \frac{\frac{\sin a\cos a}{\cos ^2a}}{\frac{\sin ^2a-\cos ^2a}{\cos ^2a}}=\frac{\frac{\sin a}{\cos a}}{(\frac{\sin a}{\cos a})^2-1}=\frac{\tan a}{\tan ^2a-1}=\frac{\frac{3}{5}}{\frac{3^2}{5^2}-1}=\frac{-15}{16}\)
b) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=\dfrac{16}{25}\)
hay \(\cos\alpha=\dfrac{4}{5}\)
Ta có: \(A=5\cdot\sin^2\alpha+6\cdot\cos^2\alpha\)
\(=5\cdot\left(\dfrac{3}{5}\right)^2+6\cdot\left(\dfrac{4}{5}\right)^2\)
\(=5\cdot\dfrac{9}{25}+6\cdot\dfrac{16}{25}\)
\(=\dfrac{141}{25}\)
c) Ta có: \(\tan\alpha=\dfrac{1}{\cot\alpha}=\dfrac{1}{\dfrac{4}{3}}=\dfrac{3}{4}\)
\(D=\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
\(=\dfrac{\dfrac{9}{16}+\dfrac{16}{9}}{\dfrac{9}{16}-\dfrac{16}{9}}=-\dfrac{337}{175}\)
1) \(tan\alpha=\dfrac{2}{3}\)
Mà: \(tan\alpha\cdot cot\alpha=1\)
\(\Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\dfrac{2}{3}}=\dfrac{3}{2}\)
Và: \(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(\Rightarrow cos^2\alpha=\dfrac{1}{1+tan^2\alpha}\)
\(\Rightarrow cos\alpha=\sqrt{\dfrac{1}{1+tan^2\alpha}}=\sqrt{\dfrac{1}{1+\left(\dfrac{2}{3}\right)^2}}=\dfrac{3\sqrt{13}}{13}\)
Lại có:
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
\(\Rightarrow sin\alpha=tan\alpha\cdot cos\alpha=\dfrac{2}{3}\cdot\dfrac{3\sqrt{13}}{13}=\dfrac{2\sqrt{13}}{13}\)