Cmr 25^n + 7^n - 4^n ( 3^ + 5^n ) chia hết cho 65
giúp mik với đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
a) ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n-6=6n-6=6\left(n-1\right)⋮6\)
\(\Rightarrow n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\)
vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\) (đpcm)
b) ta có : \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-\left(n^2-5n-7n+35\right)\)
\(=n^2-1-n^2+5n+7n-35=12n-36=12\left(n-3\right)⋮3⋮4\)
\(\Rightarrow\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\) và \(3\)
vậy \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\) và \(3\) (đpcm)
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\\ =n^2+5n-\left(n^2+2n-3n-6\right)\\ =n^2+5n-\left(n^2-n-6\right)\\ =n^2+5n-n^2+n+6\\ =\left(n^2-n^2\right)+\left(5n+n\right)+6\\ =6n+6\\ =6\left(n+1\right)⋮6\)
vậy ...
\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\\ =n^2-1-\left[\left(n-6\right)^2-1\right]\\ =n^2-1-\left(n-6\right)^2+1\\ =n^2-\left(n-6\right)^2\\ =\left(n+n-6\right)\left(n-n+6\right)\\ =6\left(2n-6\right)\\ =6\cdot2\left(n-3\right)\\ =12\left(n-3\right)⋮4\text{ và }3\)
vậy ...
a/
\(\dfrac{2n+9}{n+1}=\dfrac{2\left(n+1\right)+7}{n+1}=2+\dfrac{7}{n+1}\)
\(\Rightarrow n+1=\left\{-7;-1;1;7\right\}\Rightarrow n=\left\{-8;-2;0;6\right\}\)
b/
\(\dfrac{3n+5}{n-1}=\dfrac{3\left(n-1\right)+8}{n-1}=3+\dfrac{8}{n-1}\)
\(\Rightarrow n-1=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow n=\left\{-7;-3;-1;0;2;5;9\right\}\)
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
a) Ta có :
\(10^n=100.....000\) (\(n\) chữ số \(0\)) có tổng các chữ số là \(1\)
Lại có : \(5^3=125\) có tổng các chữ số là \(8\)
\(\Rightarrow10^n+5^3\) có tổng các chữ số là \(9\)
\(\Rightarrow10^n+5⋮9\rightarrowđpcm\)
~ Chúc bn học tốt ~
b) Số có tận cùng là \(3\) khi nâng lên lũy thừa mũ \(4n\) sẽ có tận cùng là chữ số \(1\)
Do đó : \(43^{43}=43^{4.10+3}=43^{4.10}+43^3=\left(......1\right)\left(...7\right)=\left(...7\right)\)
Số có tận cùng là \(7\) khi nâng lên lũy thừa mũ \(4n\) sẽ có tận cùng là \(1\)
Do đó : \(17^{17}=17^{4.4+1}=17^{4.4}+17^1=\left(...1\right)\left(....7\right)=\left(...7\right)\)
\(\Rightarrow43^{43}-17^{17}=\left(....7\right)-\left(...1\right)=\left(...0\right)\)
\(\Rightarrow43^{43}-17^{17}⋮10\rightarrowđpcm\)
~ Học tốt ~
3 mũ mấy vậy bạn . Bạn đánh lại đề nha.
3^n nha