K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2023

21 số hạng

19 tháng 9 2023

1 số

18 tháng 11 2023

Để \(u_n\) nguyên thì \(n^2+3n+7⋮n+1\)

=>\(n^2+n+2n+2+5⋮n+1\)

=>\(5⋮n+1\)

=>\(n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-2;4;-6\right\}\)

Vậy: \(u_n\) có 4 số hạng nhận giá trị nguyên

18 tháng 11 2023

u_n chỉ có 1 số hạng nhận giá trị nguyên.

\(u_n\in Z\Leftrightarrow n+4⋮n+1\)

=>n+1+3 chia hết cho n+1

=>n+1 thuộc Ư(3)

mà n+1>1 với n>0

nên n+1=3

=>n=2

=>Chọn C

19 tháng 9 2023

\(u_n=\dfrac{n+4}{n+1}\in Z\)

\(\Leftrightarrow n+4⋮n+1\)

\(\Leftrightarrow n+4-\left(n+1\right)⋮n+1\)

\(\Leftrightarrow n+4-n-1⋮n+1\)

\(\Leftrightarrow3⋮n+1\)

\(\Leftrightarrow n+1\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow n+1\in\left\{-2;0;-4;2\right\}\)

\(\Rightarrow\left(u_n\right)\)có 4 số hạng nguyên \(\rightarrow Chọn\) \(D\)

Để \(u_n\) có tận cùng là 7 thì \(6^n+1\) có tận cùng là 7

=>\(6^n\) có chữ số tận cùng là 6

=>\(n\in Z^+\)

\(69000< U_n< 960000\)

=>\(69000< 6^n+1< 960000\)

=>\(68999< 6^n< 959999\)

=>\(log_668999< n< log_6959999\)

=>\(6,22< n< 7,68\)

mà n là số tự nhiên

nên n=7

=>Có 1 số hạng duy nhất thỏa mãn

Để \(U_n\) có chữ số tận cùng là 9 thì \(4^n+3\) có chữ số tận cùng là 9

=>\(4^n\) có chữ số tận cùng là 6

=>\(n=4k+2\left(k\in N\right)\)

Để \(U_n< 10000\) thì \(4^n+3< 10000\)

=>\(4^n< 9997\)

=>\(n< log_49997\simeq6,6\)

mà n nguyên dương và n chia 4 dư 2

nên \(n\in\left\{2;6\right\}\)

=>Có 2 số hạng trong dãy \(\left(U_n\right)\) thỏa mãn

un=1

=>n^2-10n+9=0

=>(n-1)(n-9)=0

=>n=1 hoặc n=9

=>Chọn B

19 tháng 9 2023

un =1 

=> n^2 -10n+9=0

=>(n=1)(n-9)=0

=>n=1 hoặc n=9

=>chọn B

23 tháng 10 2023

\(u_n=1\)

=>\(n^2-10n+10=1\)

=>\(n^2-10n+9=0\)

=>(n-1)(n-9)=0

=>\(\left[{}\begin{matrix}n-1=0\\n-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=9\end{matrix}\right.\)

Vậy: Có 2 giá trị của dãy (Un) cùng bằng 1

=>Chọn  B

8 tháng 2 2022

Ủa lớp 9 học lim rồi á?

30 tháng 8 2023

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:

u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15

Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:

n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10

Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):

u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5

Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:

(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1

Vậy số hạng thứ mấy có giá trị 137137 là u1.

13 tháng 6 2015

Số số hạng là :

( 598 - 1 ) : 3 + 1 = 200 ( số ) 

                Đáp số : 200 số

13 tháng 6 2015

Số số hạng của dãy là :

(598 - 1) : 3+1 = 200 ( số hạng ) 

                Đáp số : 200 số hạng 

Trả lời: Dãy đó có tất cả   200    số hạng.