Cho dãy số (Un) có \(U_n=n^2+1\) . Hỏi dãy có tất cả bao nhiêu số hạng là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(u_n\) nguyên thì \(n^2+3n+7⋮n+1\)
=>\(n^2+n+2n+2+5⋮n+1\)
=>\(5⋮n+1\)
=>\(n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-2;4;-6\right\}\)
Vậy: \(u_n\) có 4 số hạng nhận giá trị nguyên
\(u_n\in Z\Leftrightarrow n+4⋮n+1\)
=>n+1+3 chia hết cho n+1
=>n+1 thuộc Ư(3)
mà n+1>1 với n>0
nên n+1=3
=>n=2
=>Chọn C
\(u_n=\dfrac{n+4}{n+1}\in Z\)
\(\Leftrightarrow n+4⋮n+1\)
\(\Leftrightarrow n+4-\left(n+1\right)⋮n+1\)
\(\Leftrightarrow n+4-n-1⋮n+1\)
\(\Leftrightarrow3⋮n+1\)
\(\Leftrightarrow n+1\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow n+1\in\left\{-2;0;-4;2\right\}\)
\(\Rightarrow\left(u_n\right)\)có 4 số hạng nguyên \(\rightarrow Chọn\) \(D\)
Để \(u_n\) có tận cùng là 7 thì \(6^n+1\) có tận cùng là 7
=>\(6^n\) có chữ số tận cùng là 6
=>\(n\in Z^+\)
\(69000< U_n< 960000\)
=>\(69000< 6^n+1< 960000\)
=>\(68999< 6^n< 959999\)
=>\(log_668999< n< log_6959999\)
=>\(6,22< n< 7,68\)
mà n là số tự nhiên
nên n=7
=>Có 1 số hạng duy nhất thỏa mãn
Để \(U_n\) có chữ số tận cùng là 9 thì \(4^n+3\) có chữ số tận cùng là 9
=>\(4^n\) có chữ số tận cùng là 6
=>\(n=4k+2\left(k\in N\right)\)
Để \(U_n< 10000\) thì \(4^n+3< 10000\)
=>\(4^n< 9997\)
=>\(n< log_49997\simeq6,6\)
mà n nguyên dương và n chia 4 dư 2
nên \(n\in\left\{2;6\right\}\)
=>Có 2 số hạng trong dãy \(\left(U_n\right)\) thỏa mãn
un=1
=>n^2-10n+9=0
=>(n-1)(n-9)=0
=>n=1 hoặc n=9
=>Chọn B
\(u_n=1\)
=>\(n^2-10n+10=1\)
=>\(n^2-10n+9=0\)
=>(n-1)(n-9)=0
=>\(\left[{}\begin{matrix}n-1=0\\n-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=9\end{matrix}\right.\)
Vậy: Có 2 giá trị của dãy (Un) cùng bằng 1
=>Chọn B
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
Số số hạng là :
( 598 - 1 ) : 3 + 1 = 200 ( số )
Đáp số : 200 số
Số số hạng của dãy là :
(598 - 1) : 3+1 = 200 ( số hạng )
Đáp số : 200 số hạng
Trả lời: Dãy đó có tất cả 200 số hạng.
21 số hạng
1 số