K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

loading...  loading...  loading...  

28 tháng 4 2017

a, Chứng minh C là trực tâm của tam giác OIK. Từ đó suy ra KC ⊥ OI tại H

b, IA=12cm

Chứng minh ΔKOI cân tại K

Đặt  KO = KI = x (x>0)

Có  I K 2 = I B 2 + B K 2

Hay x 2 = 12 2 + x - 9 2

=> x = 12,5 => IK = 12,5cm

5 tháng 12 2021

giải thích rõ hơn được không bạn

 

29 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC và AO là phân giác của góc BAC và OA là phân giác của góc BOC

Ta có: \(\widehat{KAO}+\widehat{COA}=90^0\)(ΔCAO vuông tại C)

\(\widehat{KOA}+\widehat{BOA}=\widehat{BOK}=90^0\)

mà \(\widehat{COA}=\widehat{BOA}\)

nên \(\widehat{KAO}=\widehat{KOA}\)

=>ΔKAO cân tại K

b:

Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Ta có: ΔBOA vuông tại B

=>\(\widehat{BAO}+\widehat{BOA}=90^0\)

=>\(\widehat{BOA}=90^0-30^0=60^0\)

Xét ΔOBI có OB=OI và \(\widehat{BOI}=60^0\)

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)

18 tháng 12 2021

b: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA⊥BC

+ Ta có: AB là tiếp tuyến của (O)(gt)

nên AB\(\perp\)OB  

=> \(\Delta\)OBA vuông tại B(đpcm)

+ Xét \(\Delta\)OAK Có A1=A2  ( 1 ) (t/c 2 tiếp tuyến cắt nhau)

OK // AB => A1 = O1 ( 2 ) (so le trong)

Từ (1, 2) => (đpcm)

b, Xét \(\Delta\)AKO cân tại K (cmt)

IA = IO (=R)

=> KI là đường trung tuyến \(\Delta\)AKO

=> KI cũng là đường cao

=> KI\(\perp\)AO  hay KM \(\perp\)IO  

Vậy KM là tiếp tuyến của (O) (đpcm)

c, MI = MB ; KI = KC ; AB = AC ( t/c 2 tiếp tuyến cắt nhau )

Xét \(\Delta\)ABO vuông tại B (cmt) 

AD định lí Py ta go ta cs : 

AO2 =AB2  + OB2

AB2 = AO2 - OB2

AB2 = 4R2 - R2

AB = \(R\sqrt{3}\)

dễ rùi tự lm tiếp