Tính:
a) \(73 - \left( {2 - 9} \right)\);
b) \(\left( { - 45} \right) - \left( {27 - 8} \right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left( { - 3,5} \right).\left( {1\frac{3}{5}} \right) = \frac{{ - 7}}{2}.\frac{8}{5} = \frac{{ - 7.8}}{{2.5}} = \frac{{ - 7.4.2}}{{2.5}} = \frac{{ - 28}}{5}\)
b) \(\frac{{ - 5}}{9}.\left( { - 2\frac{1}{2}} \right) = \frac{{ - 5}}{9}.\frac{{ - 5}}{2} = \frac{{25}}{{18}}\)
\(a)\frac{2}{{15}} + \left( {\frac{{ - 5}}{{24}}} \right) = \frac{{16}}{{120}} + \left( {\frac{{ - 25}}{{120}}} \right) = \frac{{ - 9}}{{120}} = \frac{{ - 3}}{{40}}\)
b) \(\left( {\frac{{ - 5}}{9}} \right) - \left( { - \frac{7}{{27}}} \right) = \left( {\frac{{ - 15}}{{27}}} \right) + \frac{7}{{27}} = \frac{{ - 8}}{{27}}\)
c)\(\left( { - \frac{7}{{12}}} \right) + 0,75 = \left( { - \frac{7}{{12}}} \right) + \frac{75}{100} \\= \left( { - \frac{7}{{12}}} \right) + \frac{3}{4} \\= \left( { - \frac{7}{{12}}} \right) + \frac{9}{{12}} = \frac{2}{{12}} = \frac{1}{6}\)
d)\(\left( {\frac{{ - 5}}{9}} \right) - 1,25 =\left( {\frac{{ - 5}}{9}} \right) - \frac{125}{100} = \left( {\frac{{ - 5}}{9}} \right) - \frac{5}{4}\\ = \left( {\frac{{ - 20}}{{36}}} \right) - \frac{{45}}{{36}} = \frac{{ - 65}}{{36}}\)
e)\(0,34.\frac{{ - 5}}{{17}} =\frac{{34}}{{100}}.\frac{{ - 5}}{{17}} = \frac{{17}}{{50}}.\frac{{ - 5}}{{17}} = \frac{{ - 1}}{{10}}\)
g) \(\frac{4}{9}:\left( { - \frac{8}{{15}}} \right) = \frac{4}{9}.\left( { - \frac{{15}}{8}} \right) = \frac{{ - 5}}{6}\)
h)\(\left( {1\frac{2}{3}} \right):\left( {2\frac{1}{2}} \right) = \frac{5}{3}:\frac{5}{2} = \frac{5}{3}.\frac{2}{5} = \frac{2}{3}\)
i) \(\frac{2}{5}.\left( { - 1,25} \right) = \frac{2}{5}.\frac{{ - 125}}{100} = \frac{2}{5}.\frac{{ - 5}}{4} = \frac{{ - 1}}{2}\)
k) \(\left( {\frac{{ - 3}}{5}} \right).\left( {\frac{{15}}{{ - 7}}} \right).3\frac{1}{9} = \left( {\frac{{ - 3}}{5}} \right).\left( {\frac{{15}}{{ - 7}}} \right).\frac{{28}}{9}\\ = \frac{{ - 3.3.5.7.4}}{{5.\left( { - 7} \right).3.3}} = 4\)
a: \(=x^2-x^3-2+2x+x^3+27=x^2+2x+25\)
b: \(=\dfrac{2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x-2-x-1}{x^2-x+1}\)
\(=2x^2+3x-2+\dfrac{-x-1}{x^2-x+1}\)
a,\(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5=\left(\sqrt{\dfrac{25}{16}}-\dfrac{3}{4}\right):5=\left(\dfrac{5}{4}-\dfrac{3}{4}\right):5\)
\(=\dfrac{1}{2}:5=\dfrac{1}{10}\)
b,\(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2=\left[\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\right]^2\)
\(=\left[3-4\right]^2=1\)
c,\(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)=11^2-\left(4\sqrt{3}\right)^2\)
\(=121-48=73\)
d,\(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)
\(=2-2\sqrt{2}+1-3+\dfrac{4\sqrt{2}}{5}+\sqrt{\dfrac{36}{25}.2}\)
\(=-2\sqrt{2}+\dfrac{4\sqrt{2}+6\sqrt{2}}{5}\)
\(=-2\sqrt{2}+\dfrac{10\sqrt{2}}{5}=-2\sqrt{2}+2\sqrt{2}=0\)
e,\(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)
\(=\left(1+\sqrt{2021}\right)\sqrt{2021-2\sqrt{2021}.1+1}\)
\(=\left(1+\sqrt{2021}\right)\sqrt{\left(\sqrt{2021}-1\right)^2}\)
\(=\left(1+\sqrt{2021}\right)\left(\sqrt{2021}-1\right)\)
\(=\sqrt{2021}-1+\sqrt{2021^2}-\sqrt{2021}=2020\)
a)
\(\begin{array}{l}A = \frac{5}{{11}}.\left( {\frac{{ - 3}}{{23}}} \right).\frac{{11}}{5}.\left( { - 4,6} \right)\\A = \frac{5}{{11}}.\left( {\frac{{ - 3}}{{23}}} \right).\frac{{11}}{5}.\frac{{ - 23}}{5}\\A = \frac{{5.\left( { - 3} \right).11.\left( { - 23} \right)}}{{11.23.5.5}}\\A = \frac{3}{5}\end{array}\)
b)
\(\begin{array}{l}B = \left( {\frac{{ - 7}}{9}} \right).\frac{{13}}{{25}} - \frac{{13}}{{25}}.\frac{2}{9}\\B = \frac{{13}}{{25}}.\left( {\frac{{ - 7}}{9} - \frac{2}{9}} \right)\\B = \frac{{13}}{{25}}.(-1)\\B = \frac{{-13}}{{25}}.\end{array}\)
a)\(5,75.\frac{{ - 8}}{9} =\frac{{575}}{100}.\frac{{ - 8}}{9}= \frac{{23}}{4}.\frac{{ - 8}}{9} = \frac{{ - 46}}{9}\)
b)\(2\frac{3}{8}.\left( { - 0,4} \right) = \frac{{19}}{8}.\frac{{ - 4}}{10} =\frac{{19}}{8}.\frac{{ - 2}}{5} = \frac{{ - 19}}{{20}}\);
c)\(\frac{{ - 12}}{5}:\left( { - 6,5} \right) = \frac{{ - 12}}{5}:\frac{{ - 65}}{10} =\frac{{ - 12}}{5}:\frac{{ - 13}}{2} = \frac{{ - 12}}{5}.\frac{{ - 2}}{{13}} = \frac{{24}}{{65}}\).
a) \(\dfrac{-8}{9}:\dfrac{4}{3}=\dfrac{-8}{9}.\dfrac{3}{4}=\dfrac{\left(-8\right).3}{9.4}=\dfrac{-24}{36}=\dfrac{-2}{3}\)
b) \(\left(-2\right):\dfrac{3}{5}=\left(-2\right).\dfrac{5}{2}=\dfrac{\left(-2\right).5}{2}=\dfrac{-10}{2}=-5\)
a) \(\dfrac{{ - 8}}{9}:\dfrac{4}{3} = \dfrac{{ - 8}}{9}.\dfrac{3}{4} = \dfrac{{ - 8.3}}{{9.4}} = \dfrac{{ - 2}}{3}\)
b) \(\left( { - 2} \right):\dfrac{2}{5}\)\( = \left( { - 2} \right).\dfrac{5}{2} = \dfrac{{ - 2.5}}{2} = - 5\)
a: \(=\dfrac{3}{4}-\dfrac{5}{6}+\dfrac{3}{2}=\dfrac{9-10+18}{12}=\dfrac{17}{12}\)
b: \(=\left(\dfrac{1}{9}+\dfrac{6}{9}\right)^2-\dfrac{1}{3}=\dfrac{49}{81}-\dfrac{27}{81}=\dfrac{22}{81}\)
c; \(=\dfrac{5}{11}\left(-\dfrac{3}{7}-\dfrac{5}{7}\right)+\dfrac{-8}{7}\cdot\dfrac{6}{11}=\dfrac{-8}{7}\left(\dfrac{5}{11}+\dfrac{6}{11}\right)=-\dfrac{8}{7}\)
d: \(=\dfrac{2^{26}}{2^{15}\cdot2^{12}}=\dfrac{1}{2}\)
a)
\(\begin{array}{l}\frac{3}{7}.\left( { - \frac{1}{9}} \right) + \frac{3}{7}.\left( { - \frac{2}{3}} \right)\\ = \frac{3}{7}.\left( { - \frac{1}{9} + \frac{-2}{3}} \right)\\ = \frac{3}{7}.\left( { - \frac{1}{9} - \frac{6}{9}} \right)\\ = \frac{3}{7}.\frac{{ - 7}}{9} = \frac{{ - 1}}{3}\end{array}\)
b)
\(\begin{array}{l}\left( {\frac{{ - 7}}{{13}}} \right).\frac{5}{{12}} + \left( {\frac{{ - 7}}{{13}}} \right).\frac{7}{{12}} + \left( {\frac{{ - 6}}{{13}}} \right)\\ = \frac{{ - 7}}{{13}}.\left( {\frac{5}{{12}} + \frac{7}{{12}}} \right) + \left( {\frac{{ - 6}}{{13}}} \right)\\ = \frac{{ - 7}}{{13}}.1 + \left( {\frac{{ - 6}}{{13}}} \right)\\ = \frac{{ - 7}}{{13}} + \left( {\frac{{ - 6}}{{13}}} \right)\\ = \frac{{ - 13}}{{13}}\\ = -1\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 2}}{3} + \frac{3}{7}} \right)} \right]:\frac{5}{9} + \left( {\frac{4}{7} - \frac{1}{3}} \right):\frac{5}{9}\\ = \left[ {\left( {\frac{{ - 2}}{3} + \frac{3}{7}} \right)} \right].\frac{9}{5} + \left( {\frac{4}{7} - \frac{1}{3}} \right).\frac{9}{5}\\ = \left( {\frac{{ - 2}}{3} + \frac{3}{7} + \frac{4}{7} - \frac{1}{3}} \right).\frac{9}{5}\\ = \left[ {\left( {\frac{{ - 2}}{3} - \frac{1}{3}} \right) + \left( {\frac{3}{7} + \frac{4}{7}} \right)} \right].\frac{9}{5}\\ = \left( { - 1 + 1} \right).\frac{9}{5}\\ = 0.\frac{9}{5} = 0\end{array}\)
d)
\(\begin{array}{l}\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{5}{9}:\left( {\frac{1}{{15}} - \frac{2}{3}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{5}{9}:\left( {\frac{1}{{15}} - \frac{{10}}{{15}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{5}{9}:\frac{{ - 9}}{15}\\= \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{5}{9}:\frac{{ - 3}}{5}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{5}{9}.\frac{{ - 5}}{3}\\ = \frac{5}{9}.\left( {\frac{{ - 22}}{3} - \frac{5}{3}} \right)\\ = \frac{5}{9}.\frac{-27}{3}= \frac{5}{9}.\left( { - 9} \right) = - 5\end{array}\)
e)
\(\begin{array}{l}\frac{3}{5} + \frac{3}{{11}} - \left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{{ - 2}}{{97}}} \right) - \frac{1}{{35}} - \frac{3}{4} + \left( {\frac{{ - 23}}{{44}}} \right)\\ = \frac{3}{5} + \frac{3}{{11}} + \frac{3}{7} - \frac{2}{{97}} - \frac{1}{{35}} - \frac{3}{4} - \frac{{23}}{{44}}\\ = \left( {\frac{3}{5} + \frac{3}{7} - \frac{1}{{35}}} \right) + \left( {\frac{3}{{11}} - \frac{3}{4} - \frac{{23}}{{44}}} \right) - \frac{2}{{97}}\\ = \left( {\frac{{21}}{{35}} + \frac{{15}}{{35}} - \frac{1}{{35}}} \right) + \left( {\frac{{12}}{{44}} - \frac{{33}}{{44}} - \frac{{23}}{{44}}} \right) - \frac{2}{{97}}\\ = \frac{35}{{35}}+ \frac{-44}{{44}}- \frac{2}{{97}}\\= 1 + \left( { - 1} \right) - \frac{2}{{97}}\\ = - \frac{2}{{97}}\end{array}\)
a) Cách 1: \(73 - \left( {2 - 9} \right) = 73 - 2 + 9 = 80\);
Cách 2: \(73 - \left( {2 - 9} \right) = 73 -(-7)=73+7 = 80\)
b) Cách 1: \(\left( { - 45} \right) - \left( {27 - 8} \right) = \left( { - 45} \right) - 27+8 =-72+8=- 64\)
Cách 2: \(\left( { - 45} \right) - \left( {27 - 8} \right) = \left( { - 45} \right) - 19 = - 64\)