Với n thuộc n sao, ta định nghĩa n!=1x2x3x...x n.Hỏi tổng S=1!+2!+...2023 có chia hết cho 5 hay ko ? Vì sao ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không nhé, vì từ 5! trở đi sẽ chia hết cho 5 (vì 1x2x3x4x5x.... (chia hết cho 5))
Đặt phần từ 5! -> 2023! = b (b chia hết cho 5)
ta còn: 1!+2!+3!+4!+b
=1+1x2+1x2x3 + 1x2x3x4 + b
=1+2+6+24+b
=33+b
mà 33 không chia hết cho 5 trong khi b chia hết cho 5
=> S không chia hết cho 5
S = 1! + 2! + 3! +...+ 2023!
S = (1! + 2! + 3! + 4!) + (5! + 6! +...+2023!)
S = (1 + 2 + 6 + 24) + (5! + 6!+...+2023!)
S = 33 + (5! +6!+...+ 2023!)
Vì 5!; 6!; 7!;...2023! đều chứa thừa số 5 nên
B = 5! + 6! + 7!+...+ 2023! ⋮ 5
33 không chia hết cho 5
S không chia hết cho 5
\(S=1!+2!+3!+...+2023!\)
Ta thấy :
\(1!+2!+3!+4!=1+2+6+24=33\) không chia hết cho \(5\)
\(5!+6!+7!+8!+9!=\overline{.....5}⋮5\)
\(10!+11!+12!+...+2023!=\overline{.....0}⋮5\)
Vậy \(S=1!+2!+3!+...+2023!\) không chia hết cho \(5\)
Không chia hết cho 5 bởi vì với mọi n thuộc N đều là 1số =>không chia hết cho 5
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
với n=1*2*3*....*n =>n=0 hay muốn tính tổng S ta có công thức
số các số hạng của S là
(2023-1):1=2022
tổng số các số hạng
(2023+1)*2022:1=4.092.528