K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2023

a: 

loading...

b: ABCD là hình chữ nhật

=>AB//CD và BC//AD

BC//AD

\(AD\subset\left(SAD\right)\)

BC không nằm trong mp(SAD)

Do đó: BC//(SAD)

c: AB//CD

\(CD\subset\left(SCD\right)\)

AB không nằm trong mp(SCD)

Do đó: AB//(SCD)

d: Xét ΔSAC có

O,H lần lượt là trung điểm của CA,CS

=>OH là đường trung bình của ΔSAC

=>OH//SA
OH//SA

\(SA\subset\left(SAB\right)\)

OH không nằm trong mp(SAB)

Do đó: OH//(SAB)

 

27 tháng 10 2023

a: loading...

b: BC//AD(ABCD là hình chữ nhật)

\(AD\subset\left(SAD\right)\)

BC không nằm trong mp(SAD)

Do đó: BC//(SAD)

c: AB//CD(ABCD là hình chữ nhật)

\(CD\subset\left(SCD\right)\)

AB không nằm trong mp(SCD)

Do đó: AB//(SCD)

d: Xét ΔSAC có

O,H lần lượt là trung điểm của CA,CS

=>OH là đường trung bình

=>OH//SA

OH//SA
\(SA\subset\left(SAB\right)\)

OH không nằm trong mp(SAB)

Do đó: OH//(SAB)

19 tháng 10 2023

loading...  loading...  

19 tháng 10 2023

loading...  loading...  

19 tháng 10 2023

loading...  loading...  

23 tháng 10 2023

a: Xét ΔSAC có

H,I lần lượt là trung điểm của SA,SC

=>HI là đường trung bình

=>HI//AC

\(AC\subset\left(ABCD\right)\); HI không thuộc (ABCD)

nên HI//(ABCD)

b: Xét ΔSCD có

I,K lần lượt là trung điểm của SC,SD

=>IK là đường trung bình

=>IK//CD

mà \(CD\subset\left(ABCD\right);IK\) không thuộc (ABCD)

nên IK//(ABCD)

c: IK//(ABCD)

HI//(ABCD)

\(IK,HI\subset\left(HIK\right)\)

Do đó: (HIK)//(ABCD)

 

17 tháng 11 2023

a: Xét ΔSAC có

I,H lần lượt là trung điểm của SC,SA

=>IH là đường trung bình của ΔSAC

=>IH//AC

IH//AC

AC\(\subset\)(ABCD)

IH không nằm trong mp(ABCD)

Do đó: IH//(ABCD)

b: XétΔSCD có

I,K lần lượt là trung điểm của SC,SD

=>IK là đường trung bình của ΔSCD

=>IK//CD

IK//CD

CD\(\subset\)(ABCD)

IK không nằm trong mp(ABCD)

Do đó: IK//(ABCD)

c: IK//(ABCD)

HI//(ABCD)

IK,HI nằm trong mp(HIK)

Do đó: (HIK)//(ABCD)

d: (HIK)//(ABCD)

=>BD//(HIK)

23 tháng 10 2023

a: ABCD là hình chữ nhật tâm O

=>O là trung điểm chung của AC và BD

Xét ΔASC có

O,E lần lượt là trung điểm của AC,AS

=>OE là đường trung bình

=>OE//SC

mà SC\(\subset\left(SCD\right)\) và OE không thuộc (SCD)

nên OE//(SCD)

b: Xét ΔBSD có

\(\dfrac{BO}{BD}=\dfrac{BF}{BS}=\dfrac{1}{2}\)

nên OF//SD

=>OF//(SDC)

c: OE//(SDC)
OF//(SDC)

\(OE,OF\subset\left(OEF\right)\)

Do đó: (OEF)//(SCD)

19 tháng 1 2022

undefined