cho hình chóp S.ABCD đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SD
a) xác định vị trí tương đối của OM và (SBD)
b) Chứng minh OM ll (SBA)
c) Chứng minh OM ll (SBC)
d) Chứng minh SB ll (MAC)
e) tìm giao tuyến (OMA) và (SAB)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: \(O\in BD\subset\left(SBD\right);M\in SD\subset\left(SBD\right)\)
=>\(OM\subset\left(SBD\right)\)
c: Xét ΔDSB có
O,M lần lượt là trung điểm của DB,DS
=>OM là đường trung bình của ΔSDB
=>OM//SB
OM//SB
\(SB\subset\left(SBA\right)\)
OM không nằm trong mp(SBA)
Do đó: OM//(SBA)
d: OM//SB
\(SB\subset\left(SBC\right)\)
OM không nằm trong(SBC)
Do đó: OM//(SBC)
e: SB//MO
\(MO\subset\left(MAC\right)\)
SB không nằm trong mp(AMC)
Do đó: SB//(MAC)
f: Xét (OMA) và (SAB) có
\(A\in\left(OMA\right)\cap\left(SAB\right)\)
OM//SB
Do đó: (OMA) giao (SAB)=xy, xy đi qua A và xy//OM//SB
a:
b: \(O\in AC\subset\left(SAC\right);M\in SC\subset\left(SAC\right)\)
Do đó: \(OM\subset\left(SAC\right)\)
c: Xét ΔCAS có
O,M lần lượt là trung điểm của CA,CS
=>OM là đường trung bình
=>OM//SA và OM=SA/2
OM//SA
\(SA\subset\left(SAD\right)\)
OM không nằm trong mp(SAD)
Do đó: OM//(SAD)
d: SA//MO
\(MO\subset\left(MBD\right)\)
SA không nằm trong mp(MBD)
Do đó: SA//(MBD)
e: Xét (OMD) và (SAD) có
OM//SA
\(D\in\left(OMD\right)\cap\left(SAD\right)\)
Do đó: (OMD) giao (SAD)=xy, xy đi qua D và xy//OM//SA
a:
b: \(O\in AC\subset\left(SAC\right)\)
\(M\in SC\subset\left(SAC\right)\)
Do đó: \(OM\subset\left(SAC\right)\)
c: Xét ΔSAC có
O,M lần lượt là trung điểm của CA,CS
=>OM là đường trung bình của ΔSAC
=>OM//SA và \(OM=\dfrac{1}{2}SA\)
OM//SA
SA\(\subset\left(SAD\right)\)
OM không thuộc mp(SAD)
Do đó: OM//(SAD)
d: SA//MO
\(MO\subset\left(MBD\right)\)
SA không thuộc mp(MBD)
Do đó: SA//(MBD)
e: Xét (OMD) và (SAD) có
\(D\in\left(OMD\right)\cap\left(SAD\right)\)
OM//SA
Do đó: \(\left(OMD\right)\cap\left(SAD\right)=xy,D\in xy\) và xy//OM//SA
a:
b: \(O\in AC\subset\left(SAC\right)\)
\(M\in SC\subset\left(SAC\right)\)
Do đó: \(OM\subset\left(SAC\right)\)
c: Xét ΔSAC có
O,M lần lượt là trung điểm của CA,CS
=>OM là đường trung bình của ΔSAC
=>OM//SA và \(OM=\dfrac{1}{2}SA\)
OM//SA
SA\(\subset\left(SAD\right)\)
OM không thuộc mp(SAD)
Do đó: OM//(SAD)
d: SA//MO
\(MO\subset\left(MBD\right)\)
SA không thuộc mp(MBD)
Do đó: SA//(MBD)
e: Xét (OMD) và (SAD) có
\(D\in\left(OMD\right)\cap\left(SAD\right)\)
OM//SA
Do đó: \(\left(OMD\right)\cap\left(SAD\right)=xy,D\in xy\) và xy//OM//SA
a: XétΔSDB có
M,O lần lượt là trung điểm của DS,DB
=>MO là đường trung bình của ΔSDB
=>MO//SB
SB//MO
MO\(\subset\)(MAC)
SB không nằm trong mp(MAC)
Do đó: SB//(MAC)
b: Xét (OMA) và (SAB) có
\(A\in\left(OMA\right)\cap\left(SAB\right)\)
OM//SB
Do đó: (OMA) giao (SAB)=xy,xy đi qua A và xy//OM//SB
a: Xét ΔBSD có
O,M lần lượt là trung điểm của BD,BS
=>OM là đường trung bình của ΔBSD
=>OM//SD
Ta có: OM//SD
SD\(\subset\)(SCD)
OM không nằm trong mp(SCD)
Do đó: OM//(SCD)
b: Trong mp(SBC), gọi K là giao điểm của MN với SC
Trong mp(ABCD), gọi E là giao điểm của AN với CD
\(E\in CD\subset\left(SCD\right);E\in AN\subset\left(AMN\right)\)
Do đó: \(E\in\left(SCD\right)\cap\left(AMN\right)\left(1\right)\)
\(K\in MN\subset\left(AMN\right);K\in CD\subset\left(SCD\right)\)
=>\(K\in\left(SCD\right)\cap\left(AMN\right)\left(2\right)\)
Từ (1) và (2) suy ra \(\left(SCD\right)\cap\left(AMN\right)=KE\)