\(\dfrac{2022}{2023}.\left(\dfrac{9}{13}-\dfrac{7}{11}\right)+\dfrac{2022}{2023}.\left(\dfrac{17}{13}-\dfrac{4}{17}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{17}{20}< \dfrac{18}{20}< \dfrac{18}{19}\Rightarrow\dfrac{17}{20}< \dfrac{18}{19}\)
b) \(\dfrac{19}{18}>\dfrac{19+2024}{18+2024}=\dfrac{2023}{2022}\Rightarrow\dfrac{19}{18}>\dfrac{2023}{2022}\)
c) \(\dfrac{135}{175}=\dfrac{27}{35}\)
\(\dfrac{13}{17}=\dfrac{26}{34}< \dfrac{26+1}{34+1}=\dfrac{27}{35}\)
\(\Rightarrow\dfrac{13}{17}< \dfrac{135}{175}\)
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2021}{2022}\cdot\dfrac{2022}{2023}\)
=1/2023
\(B=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2021}{2022}.\dfrac{2022}{2023}\)
\(=\dfrac{1.2.3...2022}{2.3.4...2023}=\dfrac{1}{2023}\)
Bai 1: tính nhanh A) -5/9 + 3/5 - 3/9 + -2/5 B) -5/13 + (3/5 + 3/1 - 4/10) C) 5/17 - 9/15 - 2/-17 + -2/15 D) (1/9 - 9/17) + 3/6 - ( 12/17 - 1/2) + -1/9 Bài 5: tính tổng A) 1/3 + -1/4 + 1/5 + 1/-6 + -1/-7 + 1/6 + -1/5 + 1/4 + 1/3 B) 1/12 +1/2.3+1/3.4+..+1/99100 Giúp mình nhé nhanh
c: Ta có: \(-\dfrac{5}{13}-\left(\dfrac{3}{5}+\dfrac{3}{13}-\dfrac{4}{10}\right)\)
\(=\dfrac{-5}{13}-\dfrac{3}{5}-\dfrac{3}{13}+\dfrac{2}{5}\)
\(=\dfrac{-8}{13}-\dfrac{1}{5}\)
\(=\dfrac{-53}{65}\)
d: Ta có: \(\left(\dfrac{1}{9}-\dfrac{9}{17}\right)+\dfrac{3}{6}-\left(\dfrac{12}{17}-\dfrac{1}{2}\right)+\dfrac{5}{9}\)
\(=\dfrac{1}{9}-\dfrac{9}{17}+\dfrac{1}{2}-\dfrac{12}{17}+\dfrac{1}{2}+\dfrac{5}{9}\)
\(=\dfrac{2}{3}+1-\dfrac{21}{17}\)
\(=\dfrac{22}{51}\)
Lời giải:
$\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n(n+1)}=\frac{2022}{2023}$
$\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{n(n+1)}=\frac{2022}{2023}$
$2[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{n(n+1)}]=\frac{2022}{2023}$
$2[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{n(n+1)}]=\frac{2022}{2023}$
$2(\frac{1}{2}-\frac{1}{n+1})=\frac{2022}{2023}$
$1-\frac{2}{n+1}=1-\frac{1}{2023}$
$\Rightarrow \frac{2}{n+1}=\frac{1}{2023}$
$\Rightarrow n+1=2.2023=4046$
$\Rightarrow n=4045$
a) Ta có: \(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
\(=\left(\dfrac{3}{17}-\dfrac{20}{17}\right)+\left(\dfrac{2}{9}-\dfrac{2}{9}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)\)
\(=-1+1=0\)
b) Ta có: \(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
\(=\left(\dfrac{9}{16}+\dfrac{7}{16}\right)+\left(\dfrac{-8}{27}-\dfrac{19}{27}\right)+1\)
=1-1+1=1
\(=\dfrac{tan\left(\dfrac{pi}{2}+x\right)\cdot sin\left(-x\right)\cdot cos\left(x-pi\right)}{cos\left(\dfrac{pi}{2}-x\right)\cdot sin\left(x+pi\right)}\)
\(=\dfrac{-cotx\cdot sin\left(-x\right)\cdot\left(-cosx\right)}{sinx\cdot-sinx}\)
\(=\dfrac{cotx\cdot sinx\left(-1\right)\cdot cosx}{-sinx\cdot sinx}=\dfrac{\dfrac{cosx}{sinx}\cdot cosx}{sinx}=\dfrac{cos^2x}{sin^2x}=cot^2x\)
2022/2023 . (9/13 - 7/11) + 2022/2023 . (17/13- 4/17)
= 2022/2023 . 190/43 + 2022/2023 . 237/221
= 2022/2023 . (190/43 + 237/221)
= 2022/2023 . 52181/9503
= 105509982/19224569
Sửa: \(\dfrac{2022}{2023}\cdot\left(\dfrac{9}{13}-\dfrac{7}{11}\right)+\dfrac{2022}{2023}\cdot\left(\dfrac{17}{13}-\dfrac{4}{11}\right)\)
\(=\dfrac{2022}{2023}\cdot\left(\dfrac{9}{13}-\dfrac{7}{11}+\dfrac{17}{13}-\dfrac{4}{11}\right)\)
\(=\dfrac{2022}{2023}\cdot\left(2-1\right)\)
\(=\dfrac{2022}{2023}\cdot1\)
\(=\dfrac{2022}{2023}\)