K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

Xét tam giác ABC vuông tại A áp dụn Py-ta-go ta có: 

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)

\(\Rightarrow\widehat{B}\approx53^o\)  

\(\Rightarrow\widehat{C}=90^o-53^o\approx37^o\)

17 tháng 4 2023

Nối B vs I. Xét tam giác BID vuông tại D, có:

    BD2 = BI^2 - ID2 (1).Xét tam giác ICD vuông tại D, có:

    DC2 = IC2 - ID2 (2).Từ (1) và (2) =>

=> BD2 - DC2

   = BI2 - ID2 - IC2 + ID2

   = BI2 - IC2

   = BI2 - AI2 (vì AM=CM)

   = AB2=> AB2 = BD2 - DC2 (đpcm)

17 tháng 4 2023

Câu a

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

1) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

8 tháng 2 2021

em cảm ơn ạ

 

16 tháng 2 2022

Ta có:

\(AB^2+AC^2=8^2+6^2=64+36=100\left(cm\right)\)

\(BC^2=10^2=100\left(cm\right)\)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pi-ta-go đảo)

Áp dụng định lý Pytago đảo  ta có:

AB2+AC2=82+62=100

mà 102=100

⇒82+62=102hay AB2+AC2=BC2

vậy ABC là tam giác vuông tại A

14 tháng 1 2018

b. Vì AB < AC < BC ⇒ ∠C < ∠B < ∠A (quan hệ giữa góc và cạnh đối diện trong tam giác)

10 tháng 2 2022

a) Ta có:

\(BC^2=AB^2+AC^2\)

\(10^2=6^2+8^2=36+64=100\)

Áp dụng định lí Pytago đảo 

⇒ Tam giác ABC vuông tại A

b) 1/ Xét tam giác ABD và tam giác EBD có

^A=^E=90o(gt)

BD: cạnh chung

^B1=^B2(BD phân giác ^B)

⇒ Tam giác ABD= tam giác EBD

2/ Em xem lại đề ha

23 tháng 3 2022

minfh làm rồi nhưng đến chỗ tỉ số thì mình không hiểu phải làm như nào để ra đúng cái chu vi ấy