cho \(\dfrac{x}{3}\) = \(\dfrac{y}{6}\) , 2x2-y2=-8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9: \(\left(-2x\right)\left(3x^2-2x+4\right)=-6x^3+4x^2-8x\)
\(a,=12x^3y-4x^2y^2+3xy^3\\ b,=x^3+3x^2-5x+3x^2+9x-15-x^3-4x^2+4x\\ =2x^2+8x-15\)
b: Ta có: \(\left(x+3\right)\left(x^2+3x-5\right)-x\left(x-2\right)^2\)
\(=x^3+3x^2-5x+3x^2+9x-15-x^3+4x^2-4x\)
\(=10x^2-15\)
a, \(8^3yz+12^2yz+6xyz+yz\)
\(=512yz+144yz+6xyz+yz\)
\(=yz\left(512+14+6x+1\right)\)
\(=yz\left(527+6x\right)\)
$---$
b, \(81x^4\left(z^2-y^2\right)-z^2+y^2\)
\(=81x^4\left(z^2-y^2\right)-\left(z^2-y^2\right)\)
\(=\left(z^2-y^2\right)\left(81x^4-1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left[\left(9x^2\right)^2-1^2\right]\)
\(=\left(z-y\right)\left(z+y\right)\left(9x^2-1\right)\left(9x^2+1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left[\left(3x\right)^2-1^2\right]\left(9x^2+1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left(3x-1\right)\left(3x+1\right)\left(9x^2+1\right)\)
$---$
c, \(\dfrac{x^3}{8}-\dfrac{y^3}{27}+\dfrac{x}{2}-\dfrac{y}{3}\)
\(=\left[\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{3}\right)^3\right]+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)
\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}\right)+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)
\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}+1\right)\)
$---$
d, \(x^6+x^4+x^2y^2+y^4-y^6\)
\(=\left(x^6-y^6\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left[\left(x^2\right)^3-\left(y^2\right)^3\right]+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2+1\right)\)
$Toru$
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{2x^2}{18}=\dfrac{y^2}{36}=\dfrac{2x^2-y^2}{18-36}=\dfrac{-8}{-18}=\dfrac{4}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4.3}{9}=\dfrac{4}{3}\\y=\dfrac{4.6}{9}=\dfrac{8}{3}\end{matrix}\right.\)
Bạn đúng 1 phần, vì đây là 2x2 và y2 nên nó sẽ có 2 trường hợp!
\(\dfrac{x}{3}\)=\(\dfrac{y}{6}\)=\(\dfrac{2x^2}{18}\)=\(\dfrac{y^2}{36}\)=\(\dfrac{2x^2-y^2}{18-36}\)=\(\dfrac{-8}{-18}\) =\(\dfrac{4}{9}\)
=>TH1: \(\dfrac{4}{9}\) ⇒\(\left\{{}\begin{matrix}\dfrac{4}{3}\\\dfrac{8}{3}\end{matrix}\right.\)
=>TH2: \(\dfrac{-4}{9}\)⇒\(\left\{{}\begin{matrix}\dfrac{-4}{3}\\\dfrac{-8}{3}\end{matrix}\right.\)
a, Sửa đề:
\(3x^2-\sqrt3 x+\dfrac14(dkxd:x\geq0)\\=(x\sqrt3)^2-2\cdot x\sqrt3\cdot\dfrac12+\Bigg(\dfrac12\Bigg)^2\\=\Bigg(x\sqrt3-\dfrac12\Bigg)^2\)
b,
\(x^2-x-y^2+y\\=(x^2-y^2)-(x-y)\\=(x-y)(x+y)-(x-y)\\=(x-y)(x+y-1)\)
c,
\(x^4+x^3+2x^2+x+1\\=(x^4+x^3+x^2)+(x^2+x+1)\\=x^2(x^2+x+1)+(x^2+x+1)\\=(x^2+x+1)(x^2+1)\)
d,
\(x^3+2x^2+x-16xy^2\\=x(x^2+2x+1-16y^2)\\=x[(x+1)^2-(4y)^2]\\=x(x+1-4y)(x+1+4y)\\Toru\)
\(\left(2x^2-\dfrac{1}{3}xy+y^2\right)\left(-3x^3\right)=-6x^5+x^4y-3x^3y^2\)
a. 5 - 3(x + 4) = -1
⇔ 5 - 3x - 12 = -1
⇔ 3x = -1 - 5 + 12
⇔ 3x = 6
⇔ x = 2
\(d,2x^2-3=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
\(e,x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)