Đa thức được phân tích thành nhân tử là
. . .Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(xy+1\right)^2-\left(x+y\right)^2=\left(xy+1-x-y\right)\left(xy+1+x+y\right)=\left[x\left(y-1\right)-\left(y-1\right)\right]\left[x\left(y+1\right)+\left(y+1\right)\right]=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)
\(\left(xy+1\right)^2-\left(x+y\right)^2\)
\(=\left(xy-x-y+1\right)\left(xy+1+x+y\right)\)
\(=\left(y-1\right)\left(x-1\right)\left(y+1\right)\left(x+1\right)\)
2: \(8xy-24xy+16x\)
\(=8x\cdot y-8x\cdot3y+8x\cdot2\)
\(=8x\left(y-3y+2\right)=8x\left(-2y+2\right)\)
\(=-16y\left(y-1\right)\)
3: \(xy-x=x\cdot y-x\cdot1=x\left(y-1\right)\)
11: \(2mx-4m2xy+6mx\)
\(=2mx-2my\cdot4y+2mx\cdot3\)
\(=2mx\left(1-4y+3\right)\)
\(=2mx\left(4-4y\right)=8mx\left(1-y\right)\)
12: \(7x^2y^5-14x^3y^4-21y^3\)
\(=7y^3\cdot x^2y^2-7y^3\cdot2x^3y-7y^3\cdot3\)
\(=7y^3\left(x^2y^2-2x^3y-3\right)\)
13: \(2\left(x-y\right)-a\left(x-y\right)\)
\(=2\cdot\left(x-y\right)-a\cdot\left(x-y\right)\)
\(=\left(x-y\right)\left(2-a\right)\)
a, x2+2x+1+x+1
=(x2+2x+2)+x
=(x2+2x+12)+x
=(x+1)2+x
=(2x+1)2
=(2x-1).(2x+1 )
c,xy-y-2x-2
=(xy-2x)-(y-2)
=x.(y-2)-(y-2)
=(y-2).x
e,xy+xz+y2+yz
=(xy+y2)+(xz+yz)
=y.(x+y)+z.(x+y)
=(x+y).(y+z)
d,x3+x2+x+1
=(x3+x2)+(x+1)
=x2.(x+1)+(x+1)
=x2.(x+1)
b,y2+xy+x+2y+1
=(y2+2y)+(xy+x+1)
=y.(y+2) + x.(y+2)
=(y+2).(y+x)
a: \(x^4+3x^3+x^2+3x\)
\(=x\left(x^3+3x^2+x+3\right)\)
\(=x\left(x+3\right)\left(x^2+1\right)\)
c: \(x^2-xy-x+y\)
\(=x\left(x-y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x-1\right)\)
\(a,4\left(2-x\right)^2+xy-2y\)
\(=4\left(2-x\right)^2-y\left(2-x\right)\)
\(=4-y\left(2-x\right)^2\left(2-x\right)\)
\(=\left(2-x\right)\left[\left(2-x\right)4-y\right]\)
\(=\left(2-x\right)\left(4x-8+y\right)\)
\(c,x^3+y^3+z^3-3xyz\)
\(=x^3+y^3+z^3+3x^2y-3x^2y+3xy^2-3xy^2-3xyz\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+1\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y\right)-3xyz\)
\(=\left[\left(x+y\right)+z\right]\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
a) 4(2 - x)2 + xy - 2y = 4(x - 2)2 + y(x - 2) = (4x - 8 + y)(x - 2)
b) 2(x - 1)3 - 5(x - 1)2 - (x - 1) = (x - 1)[2(x - 1)2 - 5(x - 1) - 1]
= (x - 1)(2x2 - 4x + 2 - 5x + 5 - 1) = (x - 1)(2x2 - 9x + 6)
c) x3 + y3 + z3 - 3xyz = (x + y)(x2 - xy + y2) + z3 - 3xyz
= (x + y)3 + z3 - 3xy(x + y) - 3xyz = (x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z)
= (x + y + z)(x2 + y2 + z2 - xz - yz + 2xy - 3xy) = (x + y + z)(x2 + y2 + z2 - xy - yz - xz)
1) \(2\left(x-1\right)^3-\left(x-1\right)=\left(x-1\right)\left(2\left(x-1\right)^2-1\right)\)
2) \(y\left(x-2y\right)^2+xy^2\left(2y-x\right)=\left(2y-x\right)\left(2\left(2y-x\right)+1\right)=\left(2y-x\right)\left(4y-2x+1\right)\)
3) \(xy\left(x+y\right)-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\) (xem lại đề sửa -2x thành -x mới đúng)
4) \(xy\left(x-3y\right)-2x+6y=xy\left(x-3y\right)-2\left(x-3y\right)=\left(x-3y\right)\left(xy-2\right)\)
x²y + xy² - x - y
= (x²y + xy²) - (x + y)
= xy(x + y) - (x + y)
= (x + y)(xy - 1)