chứng tỏ hai số sau nguyên tố cùng nhau: 12n+5 và 18n+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $d=ƯCLN(12n-5, 27n-11)$
$\Rightarrow 12n-5\vdots d; 27n-11\vdots d$
$\Rightarrow 9(12n-5)-4(27n-11)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy 2 số đã cho nguyên tố cùng nhau.
gọi (30n + 17, 12n + 7) = d
=> 30n + 17 chia hết cho d và 12n + 7 chia hết cho d
=> (30n + 17) - (12n + 7) chia hết cho d
=> 30 - 12 chia hết cho d
=> mà d lẻ và < 1
=> d = 1
vậy 30n + 17 và 12n + 7 là hai số nguyên tố cùng nhau
làm được bao nhiêu thì làm
ai làm được nhiêu nhất sẽ dduocj
a. Gọi d là ƯCLN ( 7n + 10 ; 5n + 7)
⇒ 7n + 10 chia hết cho d⇔5(7n + 10) chia hết cho d ⇔35n+50 chia hết cho d
và ⇒ 5n + 7 chia hết cho d ⇔ 7(5n + 7) chia hết cho d⇔35n+49 chia hết cho d
⇒35n+50-(35n+49) chia hết cho d⇔1 chia hết cho d⇒d=1
Vậy 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
b.
Giả sử d là ƯCLN ( 2n + 3 ;4n+8) và d là SNT
⇒ 4n + 8 chia hết cho d
và ⇒2n+3 chia hết cho d ⇔ 2(2n+3) chia hết cho d⇔4n+6 chia hết cho d
⇒4n+8-(4n+6) chia hết cho d⇔2 chia hết cho d và 2n+3 là số lẻ⇒d=1
Vậy 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau
c.Gọi d là ƯCLN ( 9n + 24 và 3n + 4)
⇒ 9n + 24 chia hết cho d
và ⇒3n + 4 chia hết cho d ⇔ 3(3n+4) chia hết cho d⇔9n+12 chia hết cho d
⇒9n + 24-(9n+12) chia hết cho d⇔12 chia hết cho d và 3n + 4 ko chia hết cho 3 ⇒d=2
Để 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau thì d≠≠ 2
⇒n ko chia hết cho 2
Vậy Nếu n ko chia hết cho 2 thì 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau
d,
a. Gọi d là ƯCLN ( 18n + 3 ; 21n + 7)
⇒ 18n + 3 chia hết cho d⇔7( 18n + 3) chia hết cho d ⇔126n+21 chia hết cho d
và ⇒ 21n + 7 chia hết cho d ⇔ 6(21n + 7) chia hết cho d⇔126n+42 chia hết cho d
⇒126n+42-(126n+21) chia hết cho d⇔21 chia hết cho d⇒d∈{3;7}
Mà 18n+3 ko chia hết cho 7 và 21n+7 ko chia hết cho 3⇒d=1
Vậy 18n + 3 và 21n + 7 là 2 số nguyên tố cùng nhau
Ps: nhớ k
# Aeri #
Gọi ƯCLN(12n + 1;30n + 4) = d . Ta có :
12n + 1 ⋮ d => 5(12n + 1) = 60n + 5 ⋮ d
30n + 4 ⋮ d => 2(30n + 4) = 60n + 8 ⋮ d
=> (60n + 8) - (60n + 5) ⋮ d
=> 3 ⋮ d => d ∈ Ư(3) ∈ {1;3} ( Vì ƯCLN ko có số nguyên âm)
Mặt khác :12n + 1 không chia hết cho 3 (Vì 12n ⋮ 3 nhưng 1 ko chia hết cho 3)
=> d = 1 . Vậy 2 số sau là 2 số nguyên tố cùng nhau
Oh
Gọi d = ƯCLN(12n + 5; 18n + 7)
⇒ (12n + 5) ⋮ d và (18n + 7) ⋮ d
*) (12n + 5) ⋮ d
⇒ 3.(12n + 5) ⋮ d
⇒ (36n + 15) ⋮ d (1)
*) (18n + 7) ⋮ d
⇒ 2(18n + 7) ⋮ d
⇒ (36n + 14) ⋮ d (2)
Từ (1) và (2) suy ra:
(36n + 15 - 36n - 14) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 12n + 5 và 18n + 7 là hai số nguyên tố cùng nhau