K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2023

S=1/2+1/4+1/8+...+1/1024=(1/2)^1+(1/2)^2+(1/2)^3+...+(1/2)^10

2S=1+(1/2)^1+(1/2)^2+...+(1/2)^9

2S-S=1-(1/2)^10

vậy S=1-(1/2)^10

31 tháng 12 2023

\(\dfrac{x}{1024}=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...-\dfrac{1}{1024}\)

\(\dfrac{2x}{1024}=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{512}\)

\(\Rightarrow\dfrac{x}{1024}+\dfrac{2x}{1024}=1-\dfrac{1}{1024}\)

\(\Rightarrow\dfrac{3x}{1024}=\dfrac{1023}{1024}\)

\(\Rightarrow3x=1023\)

\(\Rightarrow x=341\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2023

Lời giải:

$\frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...-\frac{1}{1024}$

$\frac{2x}{1024}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...-\frac{512}$

$\Rightarrow \frac{x}{1024}+\frac{2x}{1024}=1-\frac{1}{1024}$

$\frac{3x}{1024}=\frac{1023}{1024}$

$\Rightarrow 3x=1023$

$\Rightarrow x=341$

6 tháng 10 2021

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)

\(=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(\Rightarrow2A-A=A=1-\dfrac{1}{2^{10}}\)

6 tháng 10 2021

đây ko phải lớp 5 đúng ko ?

27 tháng 2 2023

Đặt A=1/2+1/4+1/8+..+1/1024

Ax2=1+1/2+1/4+1/8+..+1/512( Nhân cả 2 vế với 2)

Ax2-A=(1+1/2+1/4+1/8+..+1/512)-(1/2+1/4+1/8+..+1/1024)

<=>A=1-1/1024

<=>A=1023/1024

Vậy biểu thức đã cho = 1023/1024

15 tháng 10 2021
Đáp án𝑠=15376
15 tháng 10 2021

Cả lời giải bn

7 tháng 6 2017

Đặt \(A=\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\) có:

\(2A=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\)

\(\Rightarrow2A-A=\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\right)-\left(\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{1024}\)

\(\Rightarrow\dfrac{1}{2}-\left(\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)=\dfrac{1}{2}-\left(\dfrac{1}{2}-\dfrac{1}{1024}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{1024}=\dfrac{1}{1024}\)

Vậy...

7 tháng 6 2017

Cách của Tuấn Anh Phan Nguyễn đây.

\(=\dfrac{1}{2}-\left[\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{512}+\dfrac{1}{1024}\right]\)

\(=\dfrac{1}{2}-\left[\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{8}\right)+\left(\dfrac{1}{8}-\dfrac{1}{16}\right)+...+\left(\dfrac{1}{512}-\dfrac{1}{1024}\right)\right]\)\(=\dfrac{1}{2}-\left(\dfrac{1}{2}-\dfrac{1}{1024}\right)=\dfrac{1}{1024}.\)

6 tháng 9 2017

Đặt :

\(H=-1-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-..........-\dfrac{1}{1024}\)

\(\Leftrightarrow H=-1-\left(\dfrac{1}{2}+\dfrac{1}{4}+...........+\dfrac{1}{1024}\right)\)

Đặt :

\(T=\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{1024}\)

\(\Leftrightarrow T=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{10}}\)

\(\Leftrightarrow2T=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^9}\)

\(\Leftrightarrow2T-T=\left(1+\dfrac{1}{2}+.....+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\right)\)

\(\Leftrightarrow T=1-\dfrac{1}{2^{10}}\)

\(\Leftrightarrow H=-1-\left(1-\dfrac{1}{2^{10}}\right)\)

\(\Leftrightarrow H=-1-1+\dfrac{1}{2^{10}}\)

\(\Leftrightarrow H=-2+\dfrac{1}{2^{10}}\)

6 tháng 9 2017

Đặt \(A=-1-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{1024}\)

\(A=-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)\)

Đặt \(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)

\(2B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}\)

\(2B-B=1-\dfrac{1}{1024}\)

\(\Rightarrow B=\dfrac{1023}{1024}\)

\(\Rightarrow A=-\dfrac{1023}{1024}\)

12 tháng 10 2017

Gọi \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{x}=\dfrac{1023}{1024}\)

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{x}=\dfrac{1023}{1024}\)

VẬy x là một lũy thừa của 2. Đặt x = 2y , ta có:
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^y}\)

\(\Rightarrow2A=1+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{y-1}}\)

\(\Rightarrow2A-A=1+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{y-1}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^8}\right)\)

\(=A-\dfrac{1}{2^y}\)

Vậy \(1-\dfrac{1}{2^y}=\dfrac{1023}{1024}\Leftrightarrow\dfrac{1}{2^y}=\dfrac{1}{1024}\Leftrightarrow2^y=1024\Rightarrow x=1024\)

Vậy x = 1024

12 tháng 10 2017

sau đăng vào box toán nhe bạn