K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Đề có vẻ lỗi đoạn x. Bạn xem lại.

28 tháng 2 2020

Bạn kiểm tra lại đề bài.

28 tháng 2 2020

Cho hệ phương trình:

\(\hept{\begin{cases}3mx-y=3m^2-2m+1\\x+my=2m^2\end{cases}}\)

Tìm hệ thức liên hệ giữa x,y không phụ thuộc vào m

a:

Để hệ có nghiệm duy nhất thì m/2<>-2/-m

=>m^2<>4

=>m<>2 và m<>-2

 

 

9 tháng 5 2016

Phương trình luôn có hai nghiệm \(x_1;x_2\). Theo định lý Viet ta có:

\(x_1+x_2=2\left(m-1\right)\)

\(x_1x_2=m^2-2m\)

Như vậy muốn được hệ thức giữa \(x_1;x_2\) không phụ thuộc vào m, ta phải tìm cách triệt tiêu m. Cụ thể ta có:

\(\frac{x_1+x_2}{2}=m-1\Rightarrow\frac{\left(x_1+x_2\right)^2}{4}=m^2-2m+1\)

Từ đó suy ra \(\frac{\left(x_1+x_2\right)^2}{4}-x_1x_2=m^2-2m+1-m^2+2m=1\)

hay ta có hệ thức: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)

Chúc em học luôn học tập tốt :)

1) Bạn tự giải

2) Ta có: \(\Delta=4m^2-8m+9>0\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m-2\end{matrix}\right.\) (*)

Mặt khác: \(x_1^2+x_2^2=2018\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2018\)

\(\Rightarrow4m^2-4m+1-2m+4=2018\)

\(\Leftrightarrow4m^2-6m-2013=0\) \(\Leftrightarrow...\)

c)  Từ (*) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\2x_1x_2=2m-4\end{matrix}\right.\) \(\Rightarrow x_1+x_2-2x_1x_2=3\) 

                                         (Không phụ thuộc vào m)