Cho A=n-6/n-2 với n là số nguyên. Tìm GTLN và GTNN của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
....
a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên
b) Ko hiểu
***
A=n+1n−2
a. để B là phân số thì n-2 khác 0 => n khác 2
b.A=n+1n−2= n−2+3n−2= n−2n−2+3n−2=1+3n−2
để B nguyên khi n-2 là ước của 3
ta có ước 3= (-1;1;3;-3)
nên n-2=1=> n=3
n-2=-1=> n=1
n-2=3=> n=5
n-2=-3=> n=-1
vậy để A nguyên thì n=(-1;1;3;5)
Bg
Ta có: C = \(\frac{n^2-5}{n^2-2}\) (với n thuộc Z)
Để C nguyên thì n2 - 5 \(⋮\)n2 - 2
=> n2 - 5 - (n2 - 2) \(⋮\)n2 - 2
=> n2 - 5 - n2 + 2 \(⋮\)n2 - 2
=> (n2 - n2) - (5 - 2) \(⋮\)n2 - 2
=> 3 \(⋮\)n2 - 2
=> n2 - 2 thuộc Ư(3)
Ư(3) = {+1; +3}
=> n2 - 2 = 1 hay -1 hay 3 hay -3
.....Có làm thì mới có ăn :))
=> n = {-1; 1}
\(C=\frac{n^2-5}{n^2-2}=\frac{n^2-2-3}{n^2-2}=1-\frac{3}{n^2-2}\)
Để C nguyên => \(\frac{3}{n^2-2}\)nguyên
=> \(3⋮n^2-2\)
=> \(n^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n2-2 | 1 | -1 | 3 | -3 |
n | \(\pm\sqrt{3}\) | \(\pm1\) | \(\pm\sqrt{5}\) | Không có giá trị thỏa mãn |
n là số nguyên => n = \(\pm1\)
#include <bits/stdc++.h>
using namespace std;
long long a[1000],i,n,ln,t,k,nn;
int main()
{
cin>>n;
for (i=1; i<=n; i++) cin>>a[i];
ln=LLONG_MIN;
for (i=1; i<=n; i++) ln=max(ln,a[i]);
cout<<"So lon nhat la: "<<ln<<endl;
cout<<"VI tri la: ";
for (i=1; i<=n; i++) if (ln==a[i]) cout<<i<<" ";
cout<<endl;
t=0;
for (i=1; i<=n; i++)
if (a[i]>0) t+=a[i];
cout<<"Tong cac so duong la: "<<t<<endl;
cin>>k;
for (i=1; i<=n; i++)
if (a[i]%k==0) cout<<a[i]<<" ";
cout<<endl;
nn=LLONG_MAX;
for (i=1; i<=n; i++)
nn=min(nn,a[i]);
cout<<nn;
return 0;
}
a) \(P=\frac{n^2+n+n+1-5}{n+1}=\frac{n\left(n+1\right)+\left(n+1\right)-5}{n+1}\)
\(P=n+1+\frac{-5}{n+1}\)
\(P\in Z< =>n+1\inƯ\left(-5\right)\)
n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Vậy \(P\in Z< =>x\in\left\{-6;-2;0;4\right\}\)
a: Để A là phân số thì n-3<>0
hay n<>3
b: Để A là số nguyên thì \(n-3+4⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
c: Thay x=-1/2 vào A, ta được:
\(A=\dfrac{-\dfrac{1}{2}+1}{-\dfrac{1}{2}-3}=\dfrac{1}{2}:\dfrac{-7}{2}=-\dfrac{1}{7}\)
Ta có: A= (n+1)/(n-2)=(n-2+3)/(n-2)=(n-2)/(n-2) +3/(n-2)= 1+3/(n-2)
a) để A là số nguyên thì n-2 phải là ước của 3
=> n-2={-3; -1; 1; 3}
=> n={-1; 1; 3; 5}
b) Để A đạt giá trị lớn nhất thì 3/(n-2) đạt giá trị dương lớn nhất => n-2 phải đạt giá trị dương nhỏ nhất => n-2=1=> n=3
Khi đó GTLN của A là: 1+3=4
\(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để \(A_{max}\) thì \(1-\dfrac{4}{n-2}\) max
=>\(-\dfrac{4}{n-2}\) max
=>\(\dfrac{4}{n-2}\) min
=>n-2=-1
=>n=1
Để \(A_{min}\) thì \(\dfrac{4}{n-2}\) max
=>n-2=1
=>n=3
Vậy: \(A_{max}=\dfrac{1-6}{1-2}=\dfrac{-5}{-1}=5\) khi n=1
\(A_{min}=\dfrac{3-6}{3-2}=\dfrac{-3}{1}=-3\) khi n=3