1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp
1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC
a, Tứ giác BMNC là hình gì ?
b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?
c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .
d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông
2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E
a, Chứng minh tam giác BME cân
b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?
c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng
d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng
a: Xét ΔABC có
MN//BC
nên \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)
=>\(\dfrac{AN}{NC}=1\)
=>AN=NC
b: Xét tứ giác AICK có
N là trung điểm chung của AC và KI
=>AICK là hình bình hành
c: Xét ΔABC có AI là phân giác
nên \(\dfrac{IB}{IC}=\dfrac{AB}{AC}\)
\(\dfrac{MB}{NC}=\dfrac{AB}{2}:\dfrac{AC}{2}=\dfrac{AB}{AC}\)
=>\(\dfrac{IB}{IC}=\dfrac{MB}{NC}\)
=>\(IB\cdot NC=MB\cdot IC\)