cho tam giác ABC các đường trung tuyến AD, BE, CF. Các đường trung tuyến cắt nhau tại O. Gọi I, K lần lượt là trung điểm OB, OC
Chứng minh tứ giác EFIK là hình bình hành
giúp mk vs
cần gấp lắm
nhân tiện ai có nick học 24h kb lun nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
a: Xét tứ giác AOBI có
F là trung điểm của AB
F là trung điểm của OI
Do đó: AOBI là hình bình hành
Suy ra: BI=AO
a: Xét tứ giác AIBO có
F là trung điểm của AB
F là trung điểm của OI
Do đó: AIBO là hình bình hành
Suy ra: BI=AO
EF đường trung bình của tam giác ABC => EF//BC (1)
IK là đường trung bình của tam giác BOC => IK//BC (2)
Từ (1) và (2) => EF//IK (*)
EK là đường trung bình của tam giác AOC => EK//AO (3)
IF là đường trung bình của tam giác AOB => IF//AO (4)
Từ (3) và (4) => EK//IF (**)
Từ (*) và (**) => Tứ giác EFIK là hình bình hành (đpcm)
EF đường trung bình của tam giác ABC => EF//BC (1)
IK là đường trung bình của tam giác BOC => IK//BC (2)
Từ (1) và (2) => EF//IK (*)
EK là đường trung bình của tam giác AOC => EK//AO (3)
IF là đường trung bình của tam giác AOB => IF//AO (4)
Từ (3) và (4) => EK//IF (**)
Từ (*) và (**) => Tứ giác EFIK là hình bình hành (đpcm)
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~