m) (x + 5).(x.2 - 4) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e)
A = \(\frac{x+5}{x-2}\) = \(\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Muốn A nguyên thì:
=> \(\frac{7}{x-2}\) ∈ Z
=> 7 ⋮ x - 2
=> x - 2 ∈ Ư (7)
=> x - 2 ∈ { 1; 7; -1; -7 }
=> x ∈ { 3; 9; -5; 1 }
a) (5x - 1)(2x - 1/3) = 0
\(\Rightarrow5x-1=0\) hoặc \(2x-\frac{1}{3}=0\)
\(\Rightarrow\left[{}\begin{matrix}5x=0+1\\2x=0+\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1:5=\frac{1}{5}\\x=\frac{1}{3}:2=\frac{1}{3}.\frac{1}{2}=\frac{1}{6}\end{matrix}\right.\)
Vậy x = 1/5 hoặc x = 1/6
Lời giải:
a)
PT $\Leftrightarrow (x^2+4x-5)-(x^2-7x+10)=0$
$\Leftrightarrow 11x-15=0$
$\Leftrightarrow x=\frac{15}{11}$
b)
PT $\Leftrightarrow (x^2+4x-21)-(x^2+2x-8)=0$
$\Leftrightarrow 2x-13=0$
$x=\frac{13}{2}$
c)
PT $\Leftrightarrow (x^2-13x+42)-(x^2+4x)-(5x-5)=0$
$\Leftrightarrow -22x+47=0\Rightarrow x=\frac{47}{22}$
a: =>x+3>0
hay x>-3
b: =>4-x<0
hay x>4
c: =>x2-1=0 hoặc x+5=0
hay \(x\in\left\{1;-1;-5\right\}\)
a.(2x - 5)(3x + 4) - x(6x - 5) = 4
⇔ 6x2 +8x -15x-20-6x2+5x=4
⇔-2x=24
⇔ x=-12
vậy x=12
b.(x - 2)2 + x(x - 2) = 0
⇔(x-2)(x-2+x)=0
⇔(x-2) (2x-2)=0
⇔ (x-2)2(x-2)=0
⇔(x-2)2.2=0
⇔(x-2)2=0
⇔x-2=0
⇔x=2
vậy x=2
c.(x3 + 4x2 - x - 4) : (x + 4) = 0
⇔[(x3+4x2)-(x+4)] :(x+4)=0
⇔ [x2(x+4)-(x+4)] :(x+4)=0
⇔ (x+4)(x2-1):(x+4)=0
⇔(x-1)(x+1)=0
⇔ \(\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
bài 1: 5(x-2)=4(x-3) và m(x-2)-x(m-4)= 0
Xét 5(x-2)=4(x-3)
\(\Leftrightarrow\) \(5x-10-4x+12=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow x=-2\)
Xét m(x-2)-x(m-4)= 0
\(\Leftrightarrow mx-2m-mx+4x=0\)
\(\Leftrightarrow4x-2m=0\left(1\right)\)
Thay x = -2 vào pt (1), ta có:
\(4\cdot\left(-2\right)-2m=0\)
\(\Leftrightarrow-8-2m=0\)
\(\Leftrightarrow-2m=8\)
\(\Leftrightarrow m=-4\)
Vậy m = -4 thì 2 pt 5(x-2)=4(x-3) và m(x-2)-x(m-4)= 0 tương đương
bài 2: 4(x-3)=3(x-5) và m(x-3)-x(m-9)=0
Xét 4(x-3)=3(x-5)
\(\Leftrightarrow4x-12-3x+15=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Xét m(x-3)-x(m-9)=0
\(\Leftrightarrow mx-3m-mx+9x=0\)
\(\Leftrightarrow9x-3m=0\left(2\right)\)
Thay x = -3 vào pt (2), ta có:
\(9\cdot\left(-3\right)-3m=0\)
\(\Leftrightarrow-27-3m=0\)
\(\Leftrightarrow-3m=27\)
\(\Leftrightarrow m=-9\)
Vậy m = -9 thì 2 pt 4(x-3)=3(x-5) và m(x-3)-x(m-9)=0 tương đương
a: \(\Delta=\left(m-2\right)^2-4\left(m-5\right)\)
=m^2-4m+4-4m+20
=m^2-8m+24
=(m-4)^2+8>0
=>Phương trình luôn có nghiệm
b: \(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m-4\right)\)
=(2m+2)^2-4(m-4)
=4m^2+8m+4-4m+16
=4m^2+4m+20
=4m^2+4m+1+19
=(2m+1)^2+19>0
=>Phương trình luôn có nghiệm
1.
\((2x+1)(x^2+2)=0\Rightarrow \left[\begin{matrix} 2x+1=0\\ x^2+2=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{2}\\ x^2=-2< 0(\text{vô lý})\end{matrix}\right.\)
Vậy \(x=-\frac{1}{2}\)
2.\((x^2+4)(7x-3)=0\Rightarrow \left[\begin{matrix} x^2+4=0\\ 7x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-4< 0(\text{vô lý})\\ x=\frac{3}{7}\end{matrix}\right.\)
Vậy \(x=\frac{3}{7}\)
3.
\((x-5)(3-2x)(3x+4)=0\)
\(\Rightarrow \left[\begin{matrix} x-5=0\\ 3-2x=0\\ 3x+4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=5\\ x=\frac{3}{2}\\ x=-\frac{4}{3}\end{matrix}\right.\)
4.
\((x-2)(3x+5)=(2x-4)(x+1)\)
\(\Leftrightarrow (x-2)(3x+5)-(2x-4)(x+1)=0\)
\(\Leftrightarrow (x-2)(3x+5)-2(x-2)(x+1)=0\)
\(\Leftrightarrow (x-2)[(3x+5)-2(x+1)]=0\)
\(\Leftrightarrow (x-2)(x+3)=0\Rightarrow \left[\begin{matrix} x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)
5.
\((2x+5)(x-4)=(x-5)(4-x)\)
\(\Leftrightarrow (2x+5)(x-4)-(x-5)(4-x)=0\)
\(\Leftrightarrow (2x+5)(x-4)+(x-5)(x-4)=0\)
\(\Leftrightarrow (x-4)[(2x+5)+(x-5)]=0\)
\(\Leftrightarrow (x-4).3x=0\)
\(\Rightarrow \left[\begin{matrix} x-4=0\\ 3x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=4\\ x=0\end{matrix}\right.\)
m) (x + 5).(x.2 - 4) = 0
TH1: x + 5 = 0
x = 0 - 5
x = (-5)
TH2: x.2 - 4 = 0
x.2 = 0 + 4
x.2 = 4
x = 4 : 2
x = 2
⇒ Vậy x ϵ {-5;2} hoặc x = (-5) hay x = 2.