K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

Hình khó nhìn quá bạn vẽ lại cho mình với

 

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                   ...
Đọc tiếp

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                                                                                              b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH                                                                                                     c) CM EH là tiếp tuyến của đt (O)

1
31 tháng 12 2023

Bổ sung đề; OA cắt BC tại D

a: Ta có: ΔOBA vuông tại B

=>B nằm trên đường tròn đường kính OA(1)

Ta có: ΔOCA vuông tại C

=>C nằm trên đường tròn đường kính OA(2)

Từ (1) và (2) suy ra B,C,O,A cùng thuộc đường tròn đường kính OA

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(3)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra OA là đường trung trực của BC

b: OA là đường trung trực của BC

Do đó: OA\(\perp\)BC tại D và D là trung điểm của BC

Xét ΔOBA vuông tại B có BD là đường cao

nên \(OD\cdot OA=OB^2=R^2\)

Ta có: ΔOEF cân tại O

mà OG là đường trung tuyến

nên OG\(\perp\)EF tại G

Xét ΔOGA vuông tại G và ΔODH vuông tại D có

góc GOA chung

Do đó: ΔOGA đồng dạng với ΔODH

=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)

=>\(OG\cdot OH=OA\cdot OD\)

c: Ta có: \(OG\cdot OH=OA\cdot OD\)

\(OA\cdot OD=R^2\)

Do đó: \(OG\cdot OH=R^2=OE^2\)

=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

Xét ΔOGE và ΔOEH có

\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

\(\widehat{GOE}\) chung

Do đó: ΔOGE đồng dạng với ΔOEH

=>\(\widehat{OGE}=\widehat{OEH}\)

=>\(\widehat{OEH}=90^0\)

=>HE là tiếp tuyến của (O)

31 tháng 12 2023

đợi mãi mới thấy bạn trả lời

 

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                   ...
Đọc tiếp

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                                                                                              b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH                                                                                                     c) CM EH là tiếp tuyến của đt (O)

1
BẠN NGUYỄN LÊ PHƯỚC THỊNH VẼ LẠI MÌNH HỘ CÁI HÌNH VỪA NÃY VỚI HÌNH VỪA NÃY KHÓ NHÌN LẮM                                                                                              Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.                            a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực...
Đọc tiếp

BẠN NGUYỄN LÊ PHƯỚC THỊNH VẼ LẠI MÌNH HỘ CÁI HÌNH VỪA NÃY VỚI HÌNH VỪA NÃY KHÓ NHÌN LẮM                                                                                              

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.                            a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC                  b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH                             c) CM EH là tiếp tuyến của đt (O)

2
31 tháng 12 2023

Cảm ơn bạn nhiều 

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp(1)

Xét tứ giác OHMB có \(\widehat{OHM}+\widehat{OBM}=180^0\)

nên OHMB là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra O,H,A,M,B cùng thuộc đường tròn

b: Xét ΔMAC và ΔMDA có 

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó:ΔMAC\(\sim\)ΔMDA
Suy ra: MA/MD=MC/MA

hay \(MA^2=MD\cdot MC=MO^2-R^2\)

25 tháng 5 2022

 xin hình vẽ vs ạ

17 tháng 12 2022

a: Xét tứ giác KAOB có

góc KAO+góc KBO=180 độ

nên KAOB là tứ giác nội tiếp

b: Xét (O) có

KA,KB là các tiếp tuyến

nên KA=KB

mà OA=OB

nên OK là trung trực của BA

=>OK vuông góc với AB(1)

Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó: ΔBCA vuông tại B

=>BC vuông góc với BA(2)

Từ (1), (2) suy ra BC//KO

18 tháng 12 2022

Bạn ơi còn câu c

17 tháng 12 2022

CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn

1 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

OA =  2  < 2 nên điểm O và A nằm trong (A; 2)

AB = 2 nên điểm B nằm trên (A; 2)

AD = 2 nên điểm D nằm trên (A; 2)

AC = 2 2  > 2 nên điểm C nằm ngoài (A; 2)

NV
22 tháng 3 2023

a.

Do MA là tiếp tuyến \(\Rightarrow AM\perp OA\Rightarrow\Delta OAM\) vuông tại A

\(\Rightarrow O,A,M\) cùng thuộc đường tròn đường kính OM

Do \(OK\perp BC\Rightarrow\Delta OKM\) vuông tại K

\(\Rightarrow O,K,M\) cùng thuộc đường tròn đường kính OM

\(\Rightarrow M,A,O,K\) cùng thuộc đường tròn đường kính OM

Hay tứ giác MAOK nội tiếp đường tròn đường kính OM, với tâm là trung điểm J của OM và bán kính \(R=\dfrac{OM}{2}\)

b.

Do \(AI||BC\Rightarrow\widehat{IAK}=\widehat{AKM}\) (so le trong)

Lại có MAOK nội tiếp \(\Rightarrow\widehat{AKM}=\widehat{AOM}\) (cùng chắn cung AM)

\(\Rightarrow\widehat{IAK}=\widehat{AOM}\) (1)

Mà \(\widehat{AOM}+\widehat{AMO}=90^0\) (\(\Delta OAM\) vuông tại A theo c/m câu a)

\(\Rightarrow\widehat{IAK}+\widehat{AMO}=90^0\)

c.

Gọi E là trung điểm AI \(\Rightarrow OE\perp IA\)

Mà \(IA||BC\Rightarrow OE\perp BC\Rightarrow O,E,K\) thẳng hàng

\(\Rightarrow KE\) đồng thời là đường cao và trung tuyến trong tam giác KAI

\(\Rightarrow\Delta KAI\) cân tại K \(\Rightarrow\widehat{AIK}=\widehat{IAK}\) \(\Rightarrow\widehat{AIK}=\widehat{AOM}\) (theo (1))

Mặt khác \(\widehat{AIK}\) và \(\widehat{AOD}\) là góc nội tiếp và góc ở tâm cùng chắn cung AD của (O)

\(\Rightarrow\widehat{AIK}=\dfrac{1}{2}\widehat{AOD}\Rightarrow\widehat{AOM}=\dfrac{1}{2}\left(\widehat{AOM}+\widehat{MOD}\right)\)

\(\Rightarrow\widehat{AOM}=\widehat{MOD}\)

Xét hai tam giác AOM và DOM có:

\(\left\{{}\begin{matrix}OM\text{ chung}\\\widehat{AOM}=\widehat{MOD}\left(cmt\right)\\AO=DO=R\end{matrix}\right.\) \(\Rightarrow\Delta AOM=\Delta DOM\left(c.g.c\right)\)

\(\Rightarrow\widehat{ODM}=\widehat{OAM}=90^0\)

\(\Rightarrow MD\) là tiếp tuyến của (O)

NV
22 tháng 3 2023

loading...