1.Chứng minh rằng :Nếu p là số nguyên tố lớn hơn 3 thì (p+1).(p-1)⋮24
2.Cho p và 10p+1 là số nguyên tố lớn hơn 3.Chứng minh rằng 5p+1 là hợp số.
mọi người giúp em hai câu này với
mai em nộp rồi huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.
Ta có: 10p + 1 - p = 9p + 1
Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k
17p + 1 = 8p + 9p + 1 = 8p + 2k = 2.(4p + k) ⋮ 2
⇒ 17p + 1 là hợp số (đpcm)
Câu 1:
Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.
Nếu $p=3k+2$ thì:
$10p+1=10(3k+2)+1=30k+21\vdots 3$
Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)
$\Rightarrow p$ có dạng $3k+1$.
Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
(đpcm)
ét 3 số tự nhiên liên tiếp: 10.p;10+1;2.(5p+1)
=> Có 1 số chia hết cho 3; một số chia hết cho 2
Vì p và 10p+1 là 2 sồ nguyên tố (p>3)
=>p và 10p+1 ko chia hết cho 3 và 2. Vì 10 và 3 nguyên tố cùng nhau; 10 chia hết cho 2
=>10p và 10p+1 ko chia hết cho 3; 10p chia hết cho 2; 10p+1 ko chia hết cho 2
=>10p+2 chia hết cho 3. Vì 2 chia hết cho 2=>10p+2 chia hết cho 2
Vì 2 và 3 nguyên tố cùng nhau =>5p+1 chia hết cho cả 3 và 2
Vậy 5p+1 chia hết cho 6 (đpcm)
nhấn đúng nha
p là số nguyên tố, p>3 => p không chia hết cho 3, lại có (10;3)=1 => 10p không chia hết cho 3 (1)
10p+1 là số nguyên tố, 10p+1>3 => 10p+1 không chia hết cho 3 (2)
Ta có: 10p(10p+1)(10p+2) là tích 3 số tự nhiên liên tiếp => 10p(10p+1)(10p+2) chia hết cho 3 (3)
Từ (1),(2),(3) => 10p+2 chia hết cho 3 <=> 2(5p+1) chia hết cho 3
Mà (2;3)=1 Nên 5p+1 chia hết cho 3 (*)
p là số nguyên tố, p>3 => p lẻ => 5p lẻ => 5p+1 chẵn => 5p+1 chia hết cho 2 (**)
Ta có: (2;3)=1 (***)
Từ (*),(**),(***) => 5p+1 chia hết cho 6
p nguyên tố > 3
=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguyên tố nên từ (*) => 5p+1 chia hết cho 3
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
vì P là số nguyên tố lớn hơn 3
=> P = 3k + 1 hoặc 3k + 2
Nếu P = 3k + 1 => 10P = 10k + 11 là số nguyên tố ( đúng )
Nếu P = 3k + 2 => 10P = 30k 31 chia hết cho 3 ( loại )
=> P = 3k + 1
=> 5P + 1 = 15P + 6 chia hết cho 6
p nguyên tố > 3
=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguyên tố nên từ (*) => 5p+1 chia hết cho 3
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
Vì p là số nguyên tố lớn hơn 3
=>p có 2 dạng 3k+1 và 3k+2
*Xét p=3k+1=>5p+1=5.(3k+1)+1=5.3k+5+1=3.5k+6=3.(5k+2) là hợp số(loại)
*Xét p=3k+2=>5p+1=5.(3k+2)+1=5.3k+10+1=3.5k+11=3.(5k+3)+2
Khi đó: 7p+1=7.(3k+2)+1=7.3k+14+1=3.7k+15=3.(7k+5) là hợp số
Vậy 7p+1 là hợp số
Bài 1:
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ
vậy p + 1 và p - 1 là hai số chẵn.
Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.
đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)
A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1)
Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.
⇒ 4.k.(k + 1) ⋮ 8
⇒ A = (p + 1).(p - 1) ⋮ 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng:
p = 3k + 1; hoặc p = 3k + 2
Xét trường hợp p = 3k + 1 ta có:
p - 1 = 3k + 1 - 1 = 3k ⋮ 3
⇒ A = (p + 1).(p - 1) ⋮ 3 (2)
Từ (1) và (2) ta có:
A ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)
Xét trường hợp p = 3k + 2 ta có
p + 1 = 3k + 2 + 1 = 3k + 3 = 3.(k + 1) ⋮ 3 (3)
Từ (1) và (3) ta có:
A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)
Kết hợp (*) và(**) ta có
A \(⋮\) 24 (đpcm)
Cảm ơn cô