Đơn giản hóa \(\dfrac{15^{30}}{45^{15}}\)
A.\(\left(\dfrac{1}{3}\right)^{15}\) B.\(\left(\dfrac{1}{3}\right)^2\) C.1 D.315 E.515
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=2\sqrt{5}-6\sqrt{2}+3\sqrt{5}=5\sqrt{5}-6\sqrt{2}\)
2) \(B=\dfrac{30\left(\sqrt{7}+1\right)}{7-1}+\dfrac{15\left(\sqrt{7}-2\right)}{7-4}=5\sqrt{7}+5+5\sqrt{7}-10=-5+10\sqrt{7}\)
3) \(C=\left(3-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(3+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)=9-5=4\)
4) \(D=3-\sqrt{2}+1-\sqrt{2}=4-2\sqrt{2}\)
a: =>2sin(x+pi/3)=-1
=>sin(x+pi/3)=-1/2
=>x+pi/3=-pi/6+k2pi hoặc x+pi/3=7/6pi+k2pi
=>x=-1/2pi+k2pi hoặc x=2/3pi+k2pi
b: =>2sin(x-30 độ)=-1
=>sin(x-30 độ)=-1/2
=>x-30 độ=-30 độ+k*360 độ hoặc x-30 độ=180 độ+30 độ+k*360 độ
=>x=k*360 độ hoặc x=240 độ+k*360 độ
c: =>2sin(x-pi/6)=-căn 3
=>sin(x-pi/6)=-căn 3/2
=>x-pi/6=-pi/3+k2pi hoặc x-pi/6=4/3pi+k2pi
=>x=-1/6pi+k2pi hoặc x=3/2pi+k2pi
d: =>2sin(x+10 độ)=-căn 3
=>sin(x+10 độ)=-căn 3/2
=>x+10 độ=-60 độ+k*360 độ hoặc x+10 độ=240 độ+k*360 độ
=>x=-70 độ+k*360 độ hoặc x=230 độ+k*360 độ
e: \(\Leftrightarrow2\cdot sin\left(x-15^0\right)=-\sqrt{2}\)
=>\(sin\left(x-15^0\right)=-\dfrac{\sqrt{2}}{2}\)
=>x-15 độ=-45 độ+k*360 độ hoặc x-15 độ=225 độ+k*360 độ
=>x=-30 độ+k*360 độ hoặc x=240 độ+k*360 độ
f: \(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=-\dfrac{1}{\sqrt{2}}\)
=>x-pi/3=-pi/4+k2pi hoặc x-pi/3=5/4pi+k2pi
=>x=pi/12+k2pi hoặc x=19/12pi+k2pi
g) \(3+\sqrt[]{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=-\dfrac{3}{\sqrt[]{5}}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin\left[arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)\right]\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\\x+\dfrac{\pi}{3}=\pi-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)
h) \(1+sin\left(x-30^o\right)=0\)
\(\Leftrightarrow sin\left(x-30^o\right)=-1\)
\(\Leftrightarrow sin\left(x-30^o\right)=sin\left(-90^o\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-30^o=-90^0+k360^o\\x-30^o=180^o+90^0+k360^o\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^o\\x=300^0+k360^o\end{matrix}\right.\)
\(\Leftrightarrow x=-60^0+k360^o\)
\(\left(\dfrac{1-\dfrac{1}{a^2}}{\dfrac{1}{a}+1}\right)\left(\dfrac{a^2}{1-a}\right)\\ =\left(\dfrac{\dfrac{a^2-1}{a^2}}{\dfrac{a+1}{a}}\right)\left(\dfrac{a^2}{1-a}\right)\\ =\left(\dfrac{\left(a-1\right)\left(a+1\right)}{a^2}.\dfrac{a}{a+1}\right)\left(\dfrac{a^2}{1-a}\right)\\ =\dfrac{a-1}{a}.\dfrac{a^2}{1-a}\\ =-a\)
Chọn B
a) \(2\dfrac{3}{4}.\left(-0,4\right)-1\dfrac{3}{5}.2,75+\left(-1,2\right):\dfrac{4}{11}\)
= \(2,75.\left(-0,4\right)-\left(1,6\right).\left(2,75\right)+\left(-1,2\right).\dfrac{11}{4}\)
= \(2,75.\left(-0,4\right)-\left(1,6\right).\left(2,75\right)+\left(-1,2\right).\left(2,75\right)\)
= \(2,75.\left\{\left(-0,4\right)-\left(1,6\right)+\left(-1,2\right)\right\}\)
= \(2,75.\left(-3,2\right)\)
= \(-8,8\)
b) \(1,4.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):2\dfrac{1}{5}\)
= \(\dfrac{7}{5}.\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):\dfrac{11}{5}\)
= \(\dfrac{7}{5}.\dfrac{15}{49}-\dfrac{22}{15}.\dfrac{5}{11}\)
= \(\dfrac{3}{7}-\dfrac{2}{3}\)
= \(-\dfrac{5}{21}\)
c) \(\left(-3,2\right).\dfrac{15}{64}+\left(0,8-2\dfrac{4}{15}\right):3\dfrac{2}{3}\)
= \(-\dfrac{16}{5}.\dfrac{15}{64}+\left(\dfrac{4}{5}-2\dfrac{4}{15}\right):\dfrac{11}{3}\)
= \(-\dfrac{16}{5}.\dfrac{15}{64}+\left(-\dfrac{22}{15}\right).\dfrac{3}{11}\)
= \(\left(-\dfrac{3}{4}\right)+\left(-\dfrac{2}{5}\right)\)
= \(-\dfrac{23}{20}\)
d) \(0,02.\dfrac{-25}{2}+\dfrac{3}{8}+\left(-2\dfrac{9}{20}\right).\dfrac{2}{7}\)
= \(\dfrac{1}{50}.\dfrac{-25}{2}+\dfrac{3}{8}+\left(-\dfrac{49}{20}\right).\dfrac{2}{7}\)
=\(\left(-\dfrac{1}{4}\right)+\dfrac{3}{8}+\left(-\dfrac{7}{10}\right)\)
= \(\dfrac{1}{8}+\left(-\dfrac{7}{10}=\right)\)
= \(-\dfrac{23}{40}\)
e) \(34\%:\dfrac{51}{16}-3\dfrac{7}{9}.6,5-\left(0,4\right)^2\)
= \(\dfrac{17}{50}.\dfrac{16}{51}-\dfrac{34}{9}.\dfrac{13}{2}-\dfrac{4}{25}\)
= \(\dfrac{8}{75}-\dfrac{221}{9}-\dfrac{4}{15}\)
= \(-\dfrac{5501}{225}\)
a) Ta có: \(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};4\right\}\)
b) Ta có: \(x\left(2x-9\right)=3x\left(x-5\right)\)
\(\Leftrightarrow x\left(2x-9\right)-3x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)-x\left(3x-15\right)=0\)
\(\Leftrightarrow x\left(2x-9-3x+15\right)=0\)
\(\Leftrightarrow x\left(6-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: S={0;6}
c) Ta có: \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{5;\dfrac{3}{2}\right\}\)
d) Ta có: \(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
\(\Leftrightarrow6\left(5-x\right)=2\left(3x-4\right)\)
\(\Leftrightarrow30-6x=6x-8\)
\(\Leftrightarrow30-6x-6x+8=0\)
\(\Leftrightarrow-12x+38=0\)
\(\Leftrightarrow-12x=-38\)
\(\Leftrightarrow x=\dfrac{19}{6}\)
Vậy: \(S=\left\{\dfrac{19}{6}\right\}\)
e) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow6x+4-3x-1=12x+10\)
\(\Leftrightarrow3x+3-12x-10=0\)
\(\Leftrightarrow-9x-7=0\)
\(\Leftrightarrow-9x=7\)
\(\Leftrightarrow x=-\dfrac{7}{9}\)
Vậy: \(S=\left\{-\dfrac{7}{9}\right\}\)
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
a/ \(\left(-52\right)^3:13^3=\left(-52:13\right)^3=\left(-4\right)^3\)
b/ \(\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{4}\right)^6=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}=\left(\dfrac{1}{2}\right)^3\)
c/ \(\left(\dfrac{1}{9}\right)^{30}:\left(\dfrac{1}{3}\right)^{56}=\left(\dfrac{1}{3}\right)^{60}:\left(\dfrac{1}{3}\right)^{56}=\left(\dfrac{1}{3}\right)^4\)
d/ \(\left(\dfrac{1}{8}\right)^5:\left(\dfrac{1}{16}\right)^3=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}=\left(\dfrac{1}{2}\right)^3\)
Tính
a) (- 52)3 : 133 = (- 52 : 13)3 = (- 4)3 = - 64
b) \(\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{4}\right)^6\)
\(=\left(\dfrac{1}{2}\right)^{15}:\left[\left(\dfrac{1}{2}\right)^2\right]^6\)
\(=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}\)
\(=\left(\dfrac{1}{2}\right)^3\)
\(=\dfrac{1}{8}\)
c) \(\left(\dfrac{1}{9}\right)^{30}:\left(\dfrac{1}{3}\right)^{56}\)
\(=\left[\left(\dfrac{1}{3}\right)^2\right]^{30}:\left(\dfrac{1}{3}\right)^{56}\)
\(=\left(\dfrac{1}{3}\right)^{60}:\left(\dfrac{1}{3}\right)^{56}\)
\(=\left(\dfrac{1}{3}\right)^4\)
\(=\dfrac{1}{81}\)
d) \(\left(\dfrac{1}{8}\right)^5:\left(\dfrac{1}{16}\right)^3\)
\(=\left[\left(\dfrac{1}{2}\right)^3\right]^5:\left[\left(\dfrac{1}{2}\right)^4\right]^3\)
\(=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}\)
\(=\left(\dfrac{1}{2}\right)^3\)
\(=\dfrac{1}{8}.\)
E nha
\(\dfrac{15^{30}}{45^{15}}=\dfrac{5^{15}.3^{15}.15^{15}}{3^{15}.15^{15}}=5^{15}\)
\(\dfrac{15^{30}}{45^{15}}=\dfrac{15^{2\cdot15}}{45^{15}}=\dfrac{\left(15^2\right)^{15}}{45^{15}}=\dfrac{225^{15}}{45^{15}}=\left(\dfrac{225}{45}\right)^{15}=5^{15}\)