K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

ĐKXĐ la B>=0 bn nhé

14 tháng 12 2023

Câu 6:

ĐKXĐ: \(x\ne-\dfrac{1}{3}\)

Để \(\dfrac{9x+4}{3x+1}\in Z\) thì \(9x+4⋮3x+1\)

=>\(9x+3+1⋮3x+1\)

=>\(1⋮3x+1\)

=>\(3x+1\in\left\{1;-1\right\}\)

=>\(3x\in\left\{0;-2\right\}\)

=>\(x\in\left\{0;-\dfrac{2}{3}\right\}\)

mà x nguyên

nên x=0

Câu 2:

a: ĐKXĐ: \(x\notin\left\{2;-2;0\right\}\)

b: \(A=\left(\dfrac{1}{x+2}-\dfrac{2x}{4-x^2}+\dfrac{1}{x-2}\right)\cdot\dfrac{x^2-4x+4}{4x}\)

\(=\left(\dfrac{1}{x+2}+\dfrac{2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x-2}\right)\cdot\dfrac{\left(x-2\right)^2}{4x}\)

\(=\dfrac{x-2+2x+x+2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x}\)

\(=\dfrac{4x\left(x-2\right)}{4x\left(x+2\right)}=\dfrac{x-2}{x+2}\)

16 tháng 5 2019

a) Điều kiện : 3x2 – 12x ≠ 0; 3x3 – 12x = 3x(x2 – 4) = 3x(x – 2)(x + 2).

Vậy: x ≠ 0; x ≠ 2 và x ≠ -2.

2 tháng 1 2023

\(a,đk\left(B\right):x\ne\pm3\\ B=\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\\ =\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}\\ =\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{x^2-9}\\ =\dfrac{3x+9+6x+x^2-3x}{x^2-9}\\ =\dfrac{x^2+6x+9}{x^2-9}\\ =\dfrac{\left(x+3\right)^2}{x^2-9}\\ =\dfrac{x+3}{x-3}\)

\(b,P=A.B\\ =\dfrac{x+1}{x+3}\times\dfrac{x+3}{x-3}\\ =\dfrac{x+1}{x-3}\)

\(c,\) Để P nguyên 

\(\dfrac{x+1}{x-3}=1+\dfrac{4}{x-3}\)

=> \(x-3\inƯ\left(4\right)\)

\(Ư\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)

\(=>x=\left\{2;4;5;1;7;-1\right\}\)

8 tháng 1 2019

22 tháng 12 2020

a) ĐKXĐ: \(x\ne-7\)

b) ĐKXĐ: \(x\in R\)

23 tháng 12 2020

a) Để giá trị của \(\dfrac{2x^2+7}{3x+21}\) được xác định thì 3x + 21 \(\ne\) 0

=> 3(x+7) \(\ne\) 0

=> x+7 \(\ne\) 0

=> x \(\ne\) -7

Vậy để giá trị của biểu thức \(\dfrac{2x^2 +7}{3x+21}\) được xác định thì x \(\ne\) -7

b) Để giá trị của \(\dfrac{x+5}{-12+6}\) được xác định thì x \(\in\) R ( vì -12+6 \(\ne\) 0)

7 tháng 2 2022

a) \(\sqrt{3x-4}\) xác định \(\Leftrightarrow3x-4\ge0\Leftrightarrow3x\ge4\Leftrightarrow x\ge\dfrac{4}{3}\)

b) \(\dfrac{1}{\sqrt{x-4}}\) xác định \(\Leftrightarrow x-4>0\Leftrightarrow x>4\)

7 tháng 2 2022

a, đkxđ : x >= 4/3 

b, đkxđ : x > 4 

10 tháng 11 2021

\(a,ĐK:x\ne\pm1;x\ne0\\ M=\dfrac{1-x+2x}{\left(1+x\right)\left(1-x\right)}:\dfrac{1-x}{x}\\ M=\dfrac{x+1}{\left(x+1\right)\left(1-x\right)}\cdot\dfrac{x}{1-x}=\dfrac{x}{\left(1-x\right)^2}\\ b,ĐK:x\ge0;x\ne4\\ N=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ N=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

Tất cả đều phải tìm điều kiện

10 tháng 11 2021

Tại sao? =)))

13 tháng 11 2019

a) Ta có: x - 1 ≠ 0 ⇒ x ≠ 1

x2 - 1 = (x + 1)(x - 1) ≠ 0 ⇔ x ≠ -1 và x ≠ 1

x2 - 2x + 1 = (x - 1)2 ≠ 0 ⇔ x - 1 ≠ 0 ⇔ x ≠ 1

ĐKXĐ: x ≠ -1 và x ≠ 1